中文版 | English
题名

Uniformly high-order structure-preserving discontinuous galerkin methods for euler equations with gravitation: Positivity and well-balancedness

作者
发表日期
2021
DOI
发表期刊
ISSN
1064-8275
EISSN
1095-7197
卷号43期号:1页码:A472-A510
摘要

This paper presents novel high-order accurate discontinuous Galerkin (DG) schemes for the compressible Euler equations under gravitational fields. A notable feature of these schemes is that they are well-balanced for a general known hydrostatic equilibrium state and, at the same time, provably preserve the positivity of density and pressure. In order to achieve the well-balanced and positivity-preserving properties simultaneously, a novel DG spatial discretization is carefully designed with suitable source term reformulation and a properly modified Harten-Lax-van Leercontact (HLLC) flux. Based on some technical decompositions as well as several key properties of the admissible states and HLLC flux, rigorous positivity-preserving analyses are carried out. It is proven that the resulting well-balanced DG schemes, coupled with strong-stability-preserving time discretizations, satisfy a weak positivity property, which implies that one can apply a simple existing limiter to effectively enforce the positivity-preserving property, without losing high-order accuracy and conservation. The proposed methods and analyses are illustrated with the ideal equation of state (EOS) for notational convenience only, while the extensions to general EOS are straightforward and are discussed in the supplementary material. Extensive one- and two-dimensional numerical tests demonstrate the desired properties of these schemes, including the exact preservation of the equilibrium state, the ability to capture small perturbation of such state, the robustness for solving problems involving low density and/or low pressure, and good resolution for smooth and discontinuous solutions.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
NSF[DMS-1753581]
WOS研究方向
Mathematics
WOS类目
Mathematics, Applied
WOS记录号
WOS:000623833100036
出版者
EI入藏号
20211210103959
EI主题词
Equations of state ; Euler equations ; Gravitation
EI分类号
Mathematics:921 ; Numerical Methods:921.6 ; Gravitation, Relativity and String Theory:931.5
ESI学科分类
MATHEMATICS
Scopus记录号
2-s2.0-85102626075
来源库
Scopus
引用统计
被引频次[WOS]:18
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221740
专题理学院_数学系
作者单位
1.Department of Mathematics,Southern University of Science and Technology,Shenzhen, Guangdong,518055,China
2.Department of Mathematics,The Ohio State University,Columbus,43210,United States
第一作者单位数学系
第一作者的第一单位数学系
推荐引用方式
GB/T 7714
WU,KAILIANG,XING,YULONG. Uniformly high-order structure-preserving discontinuous galerkin methods for euler equations with gravitation: Positivity and well-balancedness[J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING,2021,43(1):A472-A510.
APA
WU,KAILIANG,&XING,YULONG.(2021).Uniformly high-order structure-preserving discontinuous galerkin methods for euler equations with gravitation: Positivity and well-balancedness.SIAM JOURNAL ON SCIENTIFIC COMPUTING,43(1),A472-A510.
MLA
WU,KAILIANG,et al."Uniformly high-order structure-preserving discontinuous galerkin methods for euler equations with gravitation: Positivity and well-balancedness".SIAM JOURNAL ON SCIENTIFIC COMPUTING 43.1(2021):A472-A510.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
UNIFORMLY HIGH-ORDER(4886KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[WU,KAILIANG]的文章
[XING,YULONG]的文章
百度学术
百度学术中相似的文章
[WU,KAILIANG]的文章
[XING,YULONG]的文章
必应学术
必应学术中相似的文章
[WU,KAILIANG]的文章
[XING,YULONG]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。