中文版 | English
题名

Global one-sample tests for high-dimensional covariance matrices

作者
发表日期
2021
DOI
发表期刊
ISSN
0094-9655
EISSN
1563-5163
摘要
Testing high-dimensional covariance matrix plays an important role in multivariate statistical analysis. Many statisticians used the statistics based on (Formula presented.) to test (Formula presented.) with (Formula presented.) being the covariance matrix. However, none have proposed a statistic based on (Formula presented.) for this purpose. In fact, neither of the two tests is superior to the other based on their powers because they target different kinds of dense alternatives. Furthermore, some maximum-type tests were proposed to accommodate sparse alternatives. By using the advantages of these tests, we propose two new tests for one-sample covariance matrix when the sample size and data dimension increase proportionally. One is suitable for dense alternatives, the other is powerful against a wide range of situations, such as dense, sparse or a mixture of both alternatives. Extensive simulation results show that our proposed tests maintain high powers against various alternatives while the existing tests fail in at least one situation.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
资助项目
NSFC[12071066,11690012] ; Liaoning Provincial Education Department, China[LN2020J18]
WOS研究方向
Computer Science ; Mathematics
WOS类目
Computer Science, Interdisciplinary Applications ; Statistics & Probability
WOS记录号
WOS:000627184800001
出版者
ESI学科分类
MATHEMATICS
Scopus记录号
2-s2.0-85102364590
来源库
Scopus
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221743
专题理学院_统计与数据科学系
作者单位
1.KLAS and School of Mathematics and Statistics,Northeast Normal University,Changchun,China
2.School of Statistics,Dongbei University of Finance Economics,Dalian,China
3.Department of Statistics and Data Science,Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Wang,Xiaoyi,Liu,Baisen,Shi,Ning Zhong,et al. Global one-sample tests for high-dimensional covariance matrices[J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION,2021.
APA
Wang,Xiaoyi,Liu,Baisen,Shi,Ning Zhong,Tian,Guo Liang,&Zheng,Shurong.(2021).Global one-sample tests for high-dimensional covariance matrices.JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION.
MLA
Wang,Xiaoyi,et al."Global one-sample tests for high-dimensional covariance matrices".JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION (2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Xiaoyi]的文章
[Liu,Baisen]的文章
[Shi,Ning Zhong]的文章
百度学术
百度学术中相似的文章
[Wang,Xiaoyi]的文章
[Liu,Baisen]的文章
[Shi,Ning Zhong]的文章
必应学术
必应学术中相似的文章
[Wang,Xiaoyi]的文章
[Liu,Baisen]的文章
[Shi,Ning Zhong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。