中文版 | English
题名

Long-Term Origin-Destination Demand Prediction With Graph Deep Learning

作者
发表日期
2022-12-01
DOI
发表期刊
ISSN
2332-7790
卷号8期号:6页码:1481-1495
摘要

Accurate long-term origin-destination demand (OD) prediction can help understand traffic flow dynamics, which plays an essential role in urban transportation planning. However, the main challenge originates from the complex and dynamic spatial-temporal correlation of the time-varying traffic information. In response, a graph deep learning model for long-term OD prediction (ST-GDL) is proposed in this article, which is among the pioneering work that obtains both short-term and long-term OD predictions simultaneously. ST-GDL avoids the conventional multi-step forecasting and thus prevents learning from prediction errors, rendering better long-term forecasts. The proposed method captures time attributes from multiple time scales, namely closeness, periodicity, and trend, to study the features with temporal dynamics. In addition, two gate mechanisms are introduced over the vanilla convolution operation to alleviates the error accumulation issue of typical recurrent forecast in long-term OD prediction. A method based on graph convolution is proposed to capture the dynamic spatial relationship, which projects the transportation network into a graphical time-series. Finally, the long-term OD prediction results are obtained by combining the extracted spatio-temporal features with external features from the meteorological information. Case studies on practical datasets show that the proposed model is superior to existing methods in long-term OD prediction problems.

关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一
资助项目
General Program of Guangdong Basic and Applied Basic Research Foundation[2019A1515011032] ; Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation[2020B121201001]
WOS研究方向
Computer Science
WOS类目
Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS记录号
WOS:000883167600003
出版者
EI入藏号
20211110073338
EI主题词
Convolution ; Forecasting ; Recurrent Neural Networks ; Urban Transportation
EI分类号
Highway Transportation:432 ; Highway Traffic Control:432.4 ; Railroad Transportation:433 ; Information Theory And Signal Processing:716.1
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9369004
引用统计
被引频次[WOS]:11
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221745
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China, (e-mail: 20034936r@connect.polyU.hk)
2.Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China, (e-mail: syzhang@ieee.org)
3.Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China, (e-mail: zhangch@mail.sustech.edu.cn)
4.Civil Engineering, University of Hong Kong, 25809 Hong Kong, Hong Kong, Hong Kong, (e-mail: yujq3@sustech.edu.cn)
5.The Hong Kong Polytechnic University, 26680 Kowloon, Hong Kong, Hong Kong, (e-mail: ecschung@polyu.edu.hk)
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Zou,Xiexin,Zhang,Shiyao,Zhang,Chenhan,et al. Long-Term Origin-Destination Demand Prediction With Graph Deep Learning[J]. IEEE TRANSACTIONS ON BIG DATA,2022,8(6):1481-1495.
APA
Zou,Xiexin,Zhang,Shiyao,Zhang,Chenhan,Yu,James J.Q.,&Chung,Edward.(2022).Long-Term Origin-Destination Demand Prediction With Graph Deep Learning.IEEE TRANSACTIONS ON BIG DATA,8(6),1481-1495.
MLA
Zou,Xiexin,et al."Long-Term Origin-Destination Demand Prediction With Graph Deep Learning".IEEE TRANSACTIONS ON BIG DATA 8.6(2022):1481-1495.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Long-Term_Origin-Des(818KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zou,Xiexin]的文章
[Zhang,Shiyao]的文章
[Zhang,Chenhan]的文章
百度学术
百度学术中相似的文章
[Zou,Xiexin]的文章
[Zhang,Shiyao]的文章
[Zhang,Chenhan]的文章
必应学术
必应学术中相似的文章
[Zou,Xiexin]的文章
[Zhang,Shiyao]的文章
[Zhang,Chenhan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。