题名 | A Gradient-Guided Evolutionary Approach to Training Deep Neural Networks |
作者 | |
通讯作者 | Tian,Ye; Zhang,Xingyi |
发表日期 | 2022-09
|
DOI | |
发表期刊 | |
ISSN | 2162-2388
|
卷号 | 33期号:9页码:4861-4875 |
关键词 | |
相关链接 | [IEEE记录] |
收录类别 | |
学校署名 | 其他
|
EI入藏号 | 20211110073108
|
EI主题词 | Genetic algorithms
; Recurrent neural networks
|
来源库 | IEEE
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9369973 |
引用统计 |
被引频次[WOS]:60
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/221755 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei 230039, China. 2.Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China (e-mail: field910921@gmail.com) 3.Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. 4.Department of Computing, The Hong Kong Polytechnic University, Hong Kong SAR. 5.Department of Computer Science, University of Surrey, Guildford GU2 7XH, U.K.. |
推荐引用方式 GB/T 7714 |
Yang,Shangshang,Tian,Ye,He,Cheng,et al. A Gradient-Guided Evolutionary Approach to Training Deep Neural Networks[J]. IEEE Transactions on Neural Networks and Learning Systems,2022,33(9):4861-4875.
|
APA |
Yang,Shangshang,Tian,Ye,He,Cheng,Zhang,Xingyi,Tan,Kay Chen,&Jin,Yaochu.(2022).A Gradient-Guided Evolutionary Approach to Training Deep Neural Networks.IEEE Transactions on Neural Networks and Learning Systems,33(9),4861-4875.
|
MLA |
Yang,Shangshang,et al."A Gradient-Guided Evolutionary Approach to Training Deep Neural Networks".IEEE Transactions on Neural Networks and Learning Systems 33.9(2022):4861-4875.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
GEMONN_Final.pdf(5238KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论