题名 | Bioinspired Highly Anisotropic, Ultrastrong and Stiff, and Osteoconductive Mineralized Wood Hydrogel Composites for Bone Repair |
作者 | |
通讯作者 | Ren,Fuzeng |
发表日期 | 2021
|
DOI | |
发表期刊 | |
ISSN | 1616-301X
|
EISSN | 1616-3028
|
卷号 | 31 |
摘要 | Anisotropic hydrogels mimicking the biological tissues with directional functions play essential roles in damage-tolerance, cell guidance and mass transport. However, conventional synthetic hydrogels often have an isotropic network structure, insufficient mechanical properties and lack of osteoconductivity, which greatly limit their applications for bone repair. Herein, inspired by natural bone and wood, a biomimetic strategy is presented to fabricate highly anisotropic, ultrastrong and stiff, and osteoconductive hydrogel composites via impregnation of biocompatible hydrogels into the delignified wood followed by in situ mineralization of hydroxyapatite (HAp) nanocrystals. The well-aligned cellulose nanofibrils endow the composites with highly anisotropic structural and mechanical properties. The strong intermolecular bonds of the aligned cellulose fibrils and hydrogel/wood interaction, and the reinforcing nanofillers of HAp enable the composites remarkable tensile strength of 67.8 MPa and elastic modulus of 670 MPa, three orders of magnitude higher than those of conventional alginate hydrogels. More importantly, the biocompatible hydrogel together with aligned HAp nanocrystals could effectively promote osteogenic differentiation in vitro and induce bone formation in vivo. The bone ingrowth into the hydrogel composite scaffold also yields good osteointegration. This study provides a low-cost, eco-friendly, feasible, and scalable approach for fabricating anisotropic, strong, stiff, hydrophilic, and osteoconductive hydrogel composites for bone repair. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
重要成果 | ESI高被引
; NI期刊
; ESI高被引
; ESI高被引
; ESI高被引
; ESI高被引
; ESI高被引
; ESI高被引
; ESI高被引
; ESI高被引
; ESI高被引
; ESI高被引
; ESI高被引
; ESI高被引
; ESI高被引
; ESI高被引
; ESI高被引
|
学校署名 | 第一
; 通讯
|
WOS记录号 | WOS:000625726800001
|
EI入藏号 | 20211010049312
|
EI主题词 | Anisotropy
; Biocompatibility
; Biomechanics
; Biomimetics
; Bone
; Cellulose
; Cellulose nanocrystals
; Composite structures
; Hydroxyapatite
; Repair
; Tensile strength
|
EI分类号 | Structural Members and Shapes:408.2
; Bioengineering and Biology:461
; Chemical Products Generally:804
; Inorganic Compounds:804.2
; Cellulose, Lignin and Derivatives:811.3
; Maintenance:913.5
; Physical Properties of Gases, Liquids and Solids:931.2
|
ESI学科分类 | MATERIALS SCIENCE
|
Scopus记录号 | 2-s2.0-85102085126
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:154
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/221763 |
专题 | 工学院_材料科学与工程系 前沿与交叉科学研究院 |
作者单位 | 1.Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China 2.Academy for Advanced Interdisciplinary Studies (AAIS),Southern University of Science and Technology,Shenzhen,518055,China 3.Institute for Advancing Translational Medicine in Bone and Joint Diseases,School of Chinese Medicine,Hong Kong Baptist University,999077,Hong Kong 4.School of Textile Materials and Engineering,Wuyi University,Jiangmen,529020,China 5.Key Lab of Advanced Technologies of Materials,Ministry of Education,School of Materials Science and Engineering,Southwest Jiaotong University,Chengdu,621000,China |
第一作者单位 | 材料科学与工程系; 前沿与交叉科学研究院 |
通讯作者单位 | 材料科学与工程系 |
第一作者的第一单位 | 材料科学与工程系 |
推荐引用方式 GB/T 7714 |
Wang,Xiaofei,Fang,Ju,Zhu,Weiwei,et al. Bioinspired Highly Anisotropic, Ultrastrong and Stiff, and Osteoconductive Mineralized Wood Hydrogel Composites for Bone Repair[J]. ADVANCED FUNCTIONAL MATERIALS,2021,31.
|
APA |
Wang,Xiaofei.,Fang,Ju.,Zhu,Weiwei.,Zhong,Chuanxin.,Ye,Dongdong.,...&Ren,Fuzeng.(2021).Bioinspired Highly Anisotropic, Ultrastrong and Stiff, and Osteoconductive Mineralized Wood Hydrogel Composites for Bone Repair.ADVANCED FUNCTIONAL MATERIALS,31.
|
MLA |
Wang,Xiaofei,et al."Bioinspired Highly Anisotropic, Ultrastrong and Stiff, and Osteoconductive Mineralized Wood Hydrogel Composites for Bone Repair".ADVANCED FUNCTIONAL MATERIALS 31(2021).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论