题名 | Generalisable Cardiac Structure Segmentation via Attentional and Stacked Image Adaptation |
作者 | |
通讯作者 | Zhang,Jianguo |
DOI | |
发表日期 | 2021
|
会议名称 | International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI-2021)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
会议录名称 | |
卷号 | 12592 LNCS
|
页码 | 297-304
|
会议日期 | OCTOBER 2020
|
会议地点 | Istanbul, TURKEY
|
摘要 | Tackling domain shifts in multi-centre and multi-vendor data sets remains challenging for cardiac image segmentation. In this paper, we propose a generalisable segmentation framework for cardiac image segmentation in which multi-centre, multi-vendor, multi-disease datasets are involved. A generative adversarial networks with an attention loss was proposed to translate the images from existing source domains to a target domain, thus to generate good-quality synthetic cardiac structure and enlarge the training set. A stack of data augmentation techniques was further used to simulate real-world transformation to boost the segmentation performance for unseen domains. We achieved an average Dice score of 90.3% for the left ventricle, 85.9% for the myocardium, and 86.5% for the right ventricle on the hidden validation set across four vendors. We show that the domain shifts in heterogeneous cardiac imaging datasets can be drastically reduced by two aspects: 1) good-quality synthetic data by learning the underlying target domain distribution, and 2) stacked classical image processing techniques for data augmentation. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20210909994322
|
EI主题词 | Computation theory
; Computational methods
; Data handling
; Heart
; Metadata
|
EI分类号 | Biological Materials and Tissue Engineering:461.2
; Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory:721.1
; Data Processing and Image Processing:723.2
|
Scopus记录号 | 2-s2.0-85101529791
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/221795 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science,Technical University of Munich,Munich,Germany 2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China |
通讯作者单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Li,Hongwei,Zhang,Jianguo,Menze,Bjoern. Generalisable Cardiac Structure Segmentation via Attentional and Stacked Image Adaptation[C],2021:297-304.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论