题名 | High Throughput, Area-Efficient, and Variation-Tolerant 3D In-memory Compute System for Deep Convolutional Neural Networks |
作者 | |
发表日期 | 2021
|
DOI | |
发表期刊 | |
ISSN | 2372-2541
|
EISSN | 2327-4662
|
卷号 | 8期号:11页码:9219-9232 |
摘要 | Untethered computing using Deep Convolutional Neural Networks at the edge of IoT with limited resources requires systems that are exceedingly power and area-efficient. Analog in-memory matrix-matrix multiplications enabled by emerging memories can significantly reduce the energy budget of such systems and result in compact accelerators. In this paper, we report a high-throughput RRAM-based DCNN processor that boasts 7.12× area-efficiency (AE) and 6.52× power-efficiency (PE) enhancements over state-of-the-art accelerators. We achieve this by coupling a novel in-memory computing methodology with a staggered-3D memristor array. Our variation-tolerant in-memory compute method, which performs operations on signed floating-point numbers within a single array, leverages charge domain operations and conductance discretization to reduce peripheral overheads. Voltage pulses applied at the staggered bottom electrodes of the 3D-array generate a concurrent input shift and parallelize convolution operations to boost throughput. The high density and low footprint of the 3D-array, along with the modified in-memory M2M execution, improve peak AE to 9.1TOPsmm-2 while the elimination of input regeneration improves PE to 10.6TOPsW-1. This work provides a path towards infallible RRAM-based hardware accelerators that are fast, low-power, and low-area. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
WOS记录号 | WOS:000652798400039
|
EI入藏号 | 20210809936067
|
EI主题词 | Budget control
; Convolution
; Deep neural networks
; Digital arithmetic
; Matrix algebra
; RRAM
|
EI分类号 | Information Theory and Signal Processing:716.1
; Algebra:921.1
; Numerical Methods:921.6
|
Scopus记录号 | 2-s2.0-85100838042
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9351816 |
引用统计 |
被引频次[WOS]:15
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/221818 |
专题 | 南方科技大学 工学院_深港微电子学院 |
作者单位 | 1.Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore-117583. 2.Engineering Research Center of Integrated Circuits for Next-Generation communications, Ministry of Education, Southern University of Science and Technology, Shenzhen-518055, China. 3.Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore-117583. (e-mail: aaron.thean@nus.edu.sg) |
推荐引用方式 GB/T 7714 |
Veluri,Hasita,Li,Yida,Niu,Jessie Xuhua,et al. High Throughput, Area-Efficient, and Variation-Tolerant 3D In-memory Compute System for Deep Convolutional Neural Networks[J]. IEEE Internet of Things Journal,2021,8(11):9219-9232.
|
APA |
Veluri,Hasita,Li,Yida,Niu,Jessie Xuhua,Zamburg,Evgeny,&Thean,Aaron Voon Yew.(2021).High Throughput, Area-Efficient, and Variation-Tolerant 3D In-memory Compute System for Deep Convolutional Neural Networks.IEEE Internet of Things Journal,8(11),9219-9232.
|
MLA |
Veluri,Hasita,et al."High Throughput, Area-Efficient, and Variation-Tolerant 3D In-memory Compute System for Deep Convolutional Neural Networks".IEEE Internet of Things Journal 8.11(2021):9219-9232.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
High-Throughput_Area(5152KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论