中文版 | English
题名

A Reusable Generalized Voronoi Diagram Based Feature Tree for Fast Robot Motion Planning in Trapped Environments

作者
共同第一作者Chi,Wenzheng; Wang,Jiankun
发表日期
2021
DOI
发表期刊
ISSN
1530-437X
EISSN
1558-1748
卷号PP期号:99页码:1-1
摘要

The sampling-based partial motion planning algorithm has been widely applied in real-time mobile robot navigation for its computational savings and its flexibility in avoiding obstacles. However, in some complex environments, partial planning algorithms are prone to fall into traps, resulting in the failure of motion planning. This paper proposes a feature tree algorithm based on Generalized Voronoi Diagram (GVD) to generate heuristic paths to guide partial motion planning. A GVD feature extraction algorithm is proposed to reduce the redundancy in the representation of obstacle-free regions and improve the searching efficiency in heuristic planning process. The feature node set guarantees that any node from obstacle-free regions can be connected to at least one feature node without any collision. For one map, the feature nodes only need to be extracted once and then can be reused in different scenarios on the same map. Thus, the feature extraction can be executed off-line. Based on GVD feature nodes, a feature tree is reported to generate a heuristic path and the nodes on the heuristic path are utilized sequentially as sub-goals to guide the partial motion planning. When the target changes, the feature tree can quickly replan a new heuristic path. The experimental studies reveal that our proposed method can significantly improve the robot motion planning efficiency and the navigation success rate in trapped environments.

关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
共同第一 ; 其他
EI入藏号
20210609896637
EI主题词
Computational Geometry ; Efficiency ; Extraction ; Feature Extraction ; Forestry ; Graphic Methods ; Mobile Robots ; Motion Planning
EI分类号
Computer Applications:723.5 ; Robotics:731.5 ; Chemical Operations:802.3 ; Production Engineering:913.1
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85100518251
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9336621
出版状态
正式出版
引用统计
被引频次[WOS]:7
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221828
专题工学院_电子与电气工程系
作者单位
1.Robotics and Microsystems Center, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215021, China. (e-mail: wzchi@suda.edu.cn)
2.Department of Electronic and Electrical Engineering of the Southern University of Science and Technology in Shenzhen, China.
3.Robotics and Microsystems Center, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215021, China.
推荐引用方式
GB/T 7714
Chi,Wenzheng,Wang,Jiankun,Ding,Zhiyu,et al. A Reusable Generalized Voronoi Diagram Based Feature Tree for Fast Robot Motion Planning in Trapped Environments[J]. IEEE SENSORS JOURNAL,2021,PP(99):1-1.
APA
Chi,Wenzheng,Wang,Jiankun,Ding,Zhiyu,Chen,Guodong,&Sun,Lining.(2021).A Reusable Generalized Voronoi Diagram Based Feature Tree for Fast Robot Motion Planning in Trapped Environments.IEEE SENSORS JOURNAL,PP(99),1-1.
MLA
Chi,Wenzheng,et al."A Reusable Generalized Voronoi Diagram Based Feature Tree for Fast Robot Motion Planning in Trapped Environments".IEEE SENSORS JOURNAL PP.99(2021):1-1.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chi,Wenzheng]的文章
[Wang,Jiankun]的文章
[Ding,Zhiyu]的文章
百度学术
百度学术中相似的文章
[Chi,Wenzheng]的文章
[Wang,Jiankun]的文章
[Ding,Zhiyu]的文章
必应学术
必应学术中相似的文章
[Chi,Wenzheng]的文章
[Wang,Jiankun]的文章
[Ding,Zhiyu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。