中文版 | English
题名

Evolutionary Computation for Large-scale Multi-objective Optimization: A Decade of Progresses

作者
通讯作者Tang,Ke
发表日期
2021
DOI
发表期刊
ISSN
1476-8186
EISSN
1751-8520
卷号18期号:2页码:155-169
摘要

Large-scale multi-objective optimization problems (MOPs) that involve a large number of decision variables, have emerged from many real-world applications. While evolutionary algorithms (EAs) have been widely acknowledged as a mainstream method for MOPs, most research progress and successful applications of EAs have been restricted to MOPs with small-scale decision variables. More recently, it has been reported that traditional multi-objective EAs (MOEAs) suffer severe deterioration with the increase of decision variables. As a result, and motivated by the emergence of real-world large-scale MOPs, investigation of MOEAs in this aspect has attracted much more attention in the past decade. This paper reviews the progress of evolutionary computation for large-scale multi-objective optimization from two angles. From the key difficulties of the large-scale MOPs, the scalability analysis is discussed by focusing on the performance of existing MOEAs and the challenges induced by the increase of the number of decision variables. From the perspective of methodology, the large-scale MOEAs are categorized into three classes and introduced respectively: divide and conquer based, dimensionality reduction based and enhanced search-based approaches. Several future research directions are also discussed.

关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
EI入藏号
20210209747906
EI主题词
Decision Making ; Deterioration ; Dimensionality Reduction ; Evolutionary Algorithms
EI分类号
Management:912.2 ; Optimization Techniques:921.5 ; Materials Science:951
Scopus记录号
2-s2.0-85098958881
来源库
Scopus
引用统计
被引频次[WOS]:56
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221855
专题工学院_计算机科学与工程系
作者单位
1.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
2.Department of Management Science,University of Science and Technology of China,Hefei,230027,China
3.Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-inspired Intelligence,Guangzhou,510515,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Hong,Wen Jing,Yang,Peng,Tang,Ke. Evolutionary Computation for Large-scale Multi-objective Optimization: A Decade of Progresses[J]. International Journal of Automation and Computing,2021,18(2):155-169.
APA
Hong,Wen Jing,Yang,Peng,&Tang,Ke.(2021).Evolutionary Computation for Large-scale Multi-objective Optimization: A Decade of Progresses.International Journal of Automation and Computing,18(2),155-169.
MLA
Hong,Wen Jing,et al."Evolutionary Computation for Large-scale Multi-objective Optimization: A Decade of Progresses".International Journal of Automation and Computing 18.2(2021):155-169.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Evolutionary Computa(648KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hong,Wen Jing]的文章
[Yang,Peng]的文章
[Tang,Ke]的文章
百度学术
百度学术中相似的文章
[Hong,Wen Jing]的文章
[Yang,Peng]的文章
[Tang,Ke]的文章
必应学术
必应学术中相似的文章
[Hong,Wen Jing]的文章
[Yang,Peng]的文章
[Tang,Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。