题名 | Attention-based Saliency Hashing for Ophthalmic Image Retrieval |
作者 | |
通讯作者 | Liu,Jiang |
DOI | |
发表日期 | 2020-12-16
|
会议名称 | International Conference on Bioinformatics & Biomedicine (BIBM2020)
|
ISBN | 978-1-7281-6216-4
|
会议录名称 | |
页码 | 990-995
|
会议日期 | December 16-19,2020
|
会议地点 | Seoul, Korea
|
摘要 | Deep hashing methods have been proved to be effective for the large-scale medical image search assisting reference-based diagnosis for clinicians. However, when the salient region plays a maximal discriminative role in ophthalmic image, existing deep hashing methods do not fully exploit the learning ability of the deep network to capture the features of salient regions pointedly. The different grades or classes of ophthalmic images may be share similar overall performance but have subtle differences that can be differentiated by mining salient regions. To address this issue, we propose a novel end-to-end network, named Attention-based Saliency Hashing (ASH), for learning compact hash-code to represent ophthalmic images. ASH embeds a spatial-attention module to focus more on the representation of salient regions and highlights their essential role in differentiating ophthalmic images. Benefiting from the spatial-attention module, the information of salient regions can be mapped into the hash-code for similarity calculation. Extensive experiments on two different modalities of ophthalmic image datasets demonstrate that the proposed ASH can further improve the retrieval performance compared to the state-of-the-art deep hashing methods due to the huge contributions of the spatial-attention module. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
WOS记录号 | WOS:000659487101010
|
EI入藏号 | 20210609885601
|
EI主题词 | Bioinformatics
; Diagnosis
; Hash functions
; Image retrieval
; Medical imaging
|
EI分类号 | Medicine and Pharmacology:461.6
; Bioinformatics:461.8.2
; Imaging Techniques:746
|
Scopus记录号 | 2-s2.0-85100356356
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9313536 |
引用统计 |
被引频次[WOS]:13
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/221864 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Harbin Institute of Technology,School of Computer Science and Technology,Harbin,150001,China 2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China 3.Cvte Research,Guangzhou,510530,China 4.Cixi Institute of Biomedical Engineering,Chinese Academy of Sciences,Ningbo,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Fang,Jiansheng,Xu,Yanwu,Zhang,Xiaoqing,et al. Attention-based Saliency Hashing for Ophthalmic Image Retrieval[C],2020:990-995.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Attention-based_Sali(810KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论