中文版 | English
题名

Attention-based Saliency Hashing for Ophthalmic Image Retrieval

作者
通讯作者Liu,Jiang
DOI
发表日期
2020-12-16
会议名称
International Conference on Bioinformatics & Biomedicine (BIBM2020)
ISBN
978-1-7281-6216-4
会议录名称
页码
990-995
会议日期
December 16-19,2020
会议地点
Seoul, Korea
摘要

Deep hashing methods have been proved to be effective for the large-scale medical image search assisting reference-based diagnosis for clinicians. However, when the salient region plays a maximal discriminative role in ophthalmic image, existing deep hashing methods do not fully exploit the learning ability of the deep network to capture the features of salient regions pointedly. The different grades or classes of ophthalmic images may be share similar overall performance but have subtle differences that can be differentiated by mining salient regions. To address this issue, we propose a novel end-to-end network, named Attention-based Saliency Hashing (ASH), for learning compact hash-code to represent ophthalmic images. ASH embeds a spatial-attention module to focus more on the representation of salient regions and highlights their essential role in differentiating ophthalmic images. Benefiting from the spatial-attention module, the information of salient regions can be mapped into the hash-code for similarity calculation. Extensive experiments on two different modalities of ophthalmic image datasets demonstrate that the proposed ASH can further improve the retrieval performance compared to the state-of-the-art deep hashing methods due to the huge contributions of the spatial-attention module.

关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
WOS记录号
WOS:000659487101010
EI入藏号
20210609885601
EI主题词
Bioinformatics ; Diagnosis ; Hash functions ; Image retrieval ; Medical imaging
EI分类号
Medicine and Pharmacology:461.6 ; Bioinformatics:461.8.2 ; Imaging Techniques:746
Scopus记录号
2-s2.0-85100356356
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9313536
引用统计
被引频次[WOS]:13
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221864
专题工学院_计算机科学与工程系
作者单位
1.Harbin Institute of Technology,School of Computer Science and Technology,Harbin,150001,China
2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,518055,China
3.Cvte Research,Guangzhou,510530,China
4.Cixi Institute of Biomedical Engineering,Chinese Academy of Sciences,Ningbo,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Fang,Jiansheng,Xu,Yanwu,Zhang,Xiaoqing,et al. Attention-based Saliency Hashing for Ophthalmic Image Retrieval[C],2020:990-995.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Attention-based_Sali(810KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Fang,Jiansheng]的文章
[Xu,Yanwu]的文章
[Zhang,Xiaoqing]的文章
百度学术
百度学术中相似的文章
[Fang,Jiansheng]的文章
[Xu,Yanwu]的文章
[Zhang,Xiaoqing]的文章
必应学术
必应学术中相似的文章
[Fang,Jiansheng]的文章
[Xu,Yanwu]的文章
[Zhang,Xiaoqing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。