中文版 | English
题名

ALBFL: A novel neural ranking model for software fault localization via combining static and dynamic features

作者
通讯作者Hu,Guangwu
DOI
发表日期
2020-12-01
会议名称
19th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (IEEE TrustCom)
ISSN
2324-898X
ISBN
978-1-6654-0393-1
会议录名称
页码
785-792
会议日期
29 Dec.-1 Jan. 2021
会议地点
Guangzhou, China
摘要

Automatic fault localization plays a significant role in assisting developers to fix software bugs efficiently. Although existing approaches, e.g., static methods and dynamic ones, have greatly alleviated this problem by analyzing static features in source code and diagnosing dynamic behaviors in software running state respectively, the fault localization accuracy still does not meet user requirements. To improve the fault locating ability with statement granularity, this paper proposes ALBFL, a novel neural ranking model that involves the attention mechanism and the LambdaRank model, which can integrate the static and dynamic features and achieve very high accuracy for identifying software faults. ALBFL first introduces a transformer encoder to learn the semantic features from software source code. Also, it leverages other static statistical features and dynamic features, i.e., eleven Spectrum-Based Fault Localization (SBFL) features, three mutation features, to evaluate software together. Specially, the two types of features are integrated through a self-attention layer, and fed into the LambdaRank model so as to rank a list of possible fault statements. Finally, thorough experiments are conducted on 5 open-source projects with 357 faulty programs in Defects4J. The results show that ALBFL outperforms 11 traditional SBFL methods (by three times) and 2 state-of-the-art approaches (by 13%) on ranking faulty statements in the first position.

关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
WOS记录号
WOS:000671077600093
EI入藏号
20210909981466
EI主题词
Codes (symbols) ; Open source software ; Privacy by design ; Program debugging ; Semantics
EI分类号
Computer Software, Data Handling and Applications:723
Scopus记录号
2-s2.0-85101202815
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9343192
引用统计
被引频次[WOS]:4
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221877
专题南方科技大学
未来网络研究院
作者单位
1.School of Information Technology,University of International Business and Economics,Beijing,China
2.Tsinghua Shenzhen International Graduate School,Tsinghua University,Shenzhen,China
3.Peng Cheng Laboratory,Shenzhen,China
4.School of Computer Science,Shenzhen Institute of Information Technology,Shenzhen,China
5.Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Pan,Yuqing,Xiao,Xi,Hu,Guangwu,et al. ALBFL: A novel neural ranking model for software fault localization via combining static and dynamic features[C],2020:785-792.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
ALBFL_A_Novel_Neural(301KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Pan,Yuqing]的文章
[Xiao,Xi]的文章
[Hu,Guangwu]的文章
百度学术
百度学术中相似的文章
[Pan,Yuqing]的文章
[Xiao,Xi]的文章
[Hu,Guangwu]的文章
必应学术
必应学术中相似的文章
[Pan,Yuqing]的文章
[Xiao,Xi]的文章
[Hu,Guangwu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。