中文版 | English
题名

Diagnose like a Clinician: Third-order attention guided lesion amplification network for WCE image classification

作者
DOI
发表日期
2020-10-24
会议名称
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
ISSN
2153-0858
EISSN
2153-0866
ISBN
978-1-7281-6213-3
会议录名称
页码
10145-10151
会议日期
OCT 24-JAN 24, 2020-2021
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Wireless capsule endoscopy (WCE) is a novel imaging tool that allows the noninvasive visualization of the entire gastrointestinal (GI) tract without causing discomfort to the patients. Although convolutional neural networks (CNNs) have obtained promising performance for the automatic lesion recognition, the results of the current approaches are still limited due to the small lesions and the background interference in the WCE images. To overcome these limits, we propose a Third-order Attention guided Lesion Amplification Network (TALA-Net) for WCE image classification. The TALA-Net consists of two branches, including a global branch and an attention-aware branch. Specifically, taking the high-level features in the global branch as the input, we propose a Third-order Attention (ToA) module to generate attention maps that can indicate potential lesion regions. Then, an Attention Guided Lesion Amplification (AGLA) module is proposed to deform multiple level features in the global branch, so as to zoom in the potential lesion features. The deformed features are fused into the attention-aware branch to achieve finer-scale lesion recognition. Finally, predictions from the global and attention-aware branches are averaged to obtain the classification results. Extensive experiments show that the proposed TALA-Net outperforms state-of-the-art methods with an overall classification accuracy of 94.72% on the WCE dataset.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Key R&D program of China[2019YFB1312400]
WOS研究方向
Automation & Control Systems ; Computer Science ; Engineering ; Robotics
WOS类目
Automation & Control Systems ; Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Robotics
WOS记录号
WOS:000724145800014
EI入藏号
20211110064085
EI主题词
Agricultural robots ; Classification (of information) ; Convolutional neural networks ; Endoscopy ; Intelligent robots
EI分类号
Medicine and Pharmacology:461.6 ; Information Theory and Signal Processing:716.1 ; Robot Applications:731.6
Scopus记录号
2-s2.0-85102413760
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9340750
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221910
专题工学院_电子与电气工程系
作者单位
1.The Chinese University of Hong Kong,Department of Electronic Engineering,Hong Kong,Hong Kong
2.City University of Hong Kong,Department of Electrical Engineering,Hong Kong,Hong Kong
3.Southern University of Science and Technology,Department of Electronic and Electrical Engineering,Shenzhen,China
4.The Shenzhen Research Institute,Chinese University of Hong Kong,Shenzhen,China
推荐引用方式
GB/T 7714
Xing,Xiaohan,Yuan,Yixuan,Meng,Max Q.H.. Diagnose like a Clinician: Third-order attention guided lesion amplification network for WCE image classification[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:10145-10151.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xing,Xiaohan]的文章
[Yuan,Yixuan]的文章
[Meng,Max Q.H.]的文章
百度学术
百度学术中相似的文章
[Xing,Xiaohan]的文章
[Yuan,Yixuan]的文章
[Meng,Max Q.H.]的文章
必应学术
必应学术中相似的文章
[Xing,Xiaohan]的文章
[Yuan,Yixuan]的文章
[Meng,Max Q.H.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。