中文版 | English
题名

Pedestrian motion tracking by using inertial sensors on the smartphone

作者
DOI
发表日期
2020-10-24
会议名称
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
ISSN
2153-0858
EISSN
2153-0866
ISBN
978-1-7281-6213-3
会议录名称
页码
4426-4431
会议日期
OCT 24-JAN 24, 2020-2021
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Inertial Measurement Unit (IMU) has long been a dream for stable and reliable motion estimation, especially in indoor environments where GPS strength limits. In this paper, we propose a novel method for position and orientation estimation of a moving object only from a sequence of IMU signals collected from the phone. Our main observation is that human motion is monotonous and periodic. We adopt the Extended Kalman Filter and use the learning-based method to dynamically update the measurement noise of the filter. Our pedestrian motion tracking system intends to accurately estimate planar position, velocity, heading direction without restricting the phone's daily use. The method is not only tested on the self-collected signals, but also provides accurate position and velocity estimations on the public RIDI dataset, i.e., the absolute transmit error is 1.28m for a 59-second sequence.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
Hong Kong ITC ITSP Tier 2 grant[ITS/105/18FP]
WOS研究方向
Automation & Control Systems ; Computer Science ; Engineering ; Robotics
WOS类目
Automation & Control Systems ; Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Robotics
WOS记录号
WOS:000714033802055
EI入藏号
20211110063205
EI主题词
Agricultural robots ; Intelligent robots ; Kalman filters ; Motion estimation ; Telephone sets
EI分类号
Telephone Systems and Equipment:718.1 ; Robot Applications:731.6
Scopus记录号
2-s2.0-85102403668
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9341173
引用统计
被引频次[WOS]:7
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221914
专题工学院_电子与电气工程系
作者单位
1.The Chinese University of Hong Kong,Robotics,Perception and Artificial Intelligence Lab,Department of Electronic Engineering,N.T.,Hong Kong
2.Southern University of Science and Technology,Department of Electronic and Electrical Engineering,Shenzhen,China
3.Shenzhen Research Institute of the Chinese University of Hong Kong in Shenzhen,China
推荐引用方式
GB/T 7714
Wang,Yingying,Cheng,Hu,Meng,Max Q.H.. Pedestrian motion tracking by using inertial sensors on the smartphone[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:4426-4431.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Yingying]的文章
[Cheng,Hu]的文章
[Meng,Max Q.H.]的文章
百度学术
百度学术中相似的文章
[Wang,Yingying]的文章
[Cheng,Hu]的文章
[Meng,Max Q.H.]的文章
必应学术
必应学术中相似的文章
[Wang,Yingying]的文章
[Cheng,Hu]的文章
[Meng,Max Q.H.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。