题名 | Pedestrian motion tracking by using inertial sensors on the smartphone |
作者 | |
DOI | |
发表日期 | 2020-10-24
|
会议名称 | IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
|
ISSN | 2153-0858
|
EISSN | 2153-0866
|
ISBN | 978-1-7281-6213-3
|
会议录名称 | |
页码 | 4426-4431
|
会议日期 | OCT 24-JAN 24, 2020-2021
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Inertial Measurement Unit (IMU) has long been a dream for stable and reliable motion estimation, especially in indoor environments where GPS strength limits. In this paper, we propose a novel method for position and orientation estimation of a moving object only from a sequence of IMU signals collected from the phone. Our main observation is that human motion is monotonous and periodic. We adopt the Extended Kalman Filter and use the learning-based method to dynamically update the measurement noise of the filter. Our pedestrian motion tracking system intends to accurately estimate planar position, velocity, heading direction without restricting the phone's daily use. The method is not only tested on the self-collected signals, but also provides accurate position and velocity estimations on the public RIDI dataset, i.e., the absolute transmit error is 1.28m for a 59-second sequence. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | Hong Kong ITC ITSP Tier 2 grant[ITS/105/18FP]
|
WOS研究方向 | Automation & Control Systems
; Computer Science
; Engineering
; Robotics
|
WOS类目 | Automation & Control Systems
; Computer Science, Artificial Intelligence
; Engineering, Electrical & Electronic
; Robotics
|
WOS记录号 | WOS:000714033802055
|
EI入藏号 | 20211110063205
|
EI主题词 | Agricultural robots
; Intelligent robots
; Kalman filters
; Motion estimation
; Telephone sets
|
EI分类号 | Telephone Systems and Equipment:718.1
; Robot Applications:731.6
|
Scopus记录号 | 2-s2.0-85102403668
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9341173 |
引用统计 |
被引频次[WOS]:7
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/221914 |
专题 | 工学院_电子与电气工程系 |
作者单位 | 1.The Chinese University of Hong Kong,Robotics,Perception and Artificial Intelligence Lab,Department of Electronic Engineering,N.T.,Hong Kong 2.Southern University of Science and Technology,Department of Electronic and Electrical Engineering,Shenzhen,China 3.Shenzhen Research Institute of the Chinese University of Hong Kong in Shenzhen,China |
推荐引用方式 GB/T 7714 |
Wang,Yingying,Cheng,Hu,Meng,Max Q.H.. Pedestrian motion tracking by using inertial sensors on the smartphone[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:4426-4431.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论