中文版 | English
题名

Dense-View GEIs Set: View Space Covering for Gait Recognition based on Dense-View GAN

作者
通讯作者Liao, Rijun
DOI
发表日期
2020
会议名称
IEEE/IAPR International Joint Conference on Biometrics (IJCB)
ISSN
2474-9680
ISBN
978-1-7281-9187-4
会议录名称
页码
1-9
会议日期
SEP 28-OCT 01, 2020
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Gait recognition has proven to be effective for long-distance human recognition. But view variance of gait features would change human appearance greatly and reduce its performance. Most existing gait datasets usually collect data with a dozen different angles, or even more few. Limited view angles would prevent learning better view invariant feature. It can further improve robustness of gait recognition if we collect data with various angles at 1 degrees interval. But it is time consuming and labor consuming to collect this kind of dataset. In this paper, we, therefore, introduce a Dense-View GEIs Set (DV-GEIs) to deal with the challenge of limited view angles. This set can cover the whole view space, view angle from 0 degrees to 180 degrees with 1 degrees interval. In addition, Dense-View GAN (DV-GAN) is proposed to synthesize this dense view set. DV-GAN consists of Generator, Discriminator and Monitor, where Monitor is designed to preserve human identification and view information. The proposed method is evaluated on the CASIA-B and OU-ISIR dataset. The experimental results show that DV-GEIs synthesized by DV-GAN is an effective way to learn better view invariant feature. We believe the idea of dense view generated samples will further improve the development of gait recognition.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
NSF I/UCRC[1747751]
WOS研究方向
Computer Science ; Engineering ; Mathematical & Computational Biology
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Mathematical & Computational Biology
WOS记录号
WOS:000723870900056
EI入藏号
20210409827436
EI主题词
Biometrics ; Data acquisition
EI分类号
Bioengineering and Biology:461 ; Biomechanics, Bionics and Biomimetics:461.3 ; Data Processing and Image Processing:723.2
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9304910
引用统计
被引频次[WOS]:5
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221920
专题工学院_计算机科学与工程系
作者单位
1.Univ Missouri Kansas City, Dept Comp Sci & Elect Engn, Kansas City, MO 64110 USA
2.Univ Texas Arlington, Dept Comp Sci & Engn, Arlington, TX 76019 USA
3.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
4.Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing, Peoples R China
5.Watrix Technol Ltd Co Ltd, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Liao, Rijun,An, Weizhi,Yu, Shiqi,et al. Dense-View GEIs Set: View Space Covering for Gait Recognition based on Dense-View GAN[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1-9.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liao, Rijun]的文章
[An, Weizhi]的文章
[Yu, Shiqi]的文章
百度学术
百度学术中相似的文章
[Liao, Rijun]的文章
[An, Weizhi]的文章
[Yu, Shiqi]的文章
必应学术
必应学术中相似的文章
[Liao, Rijun]的文章
[An, Weizhi]的文章
[Yu, Shiqi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。