中文版 | English
题名

iLGaCo: Incremental Learning of Gait Covariate Factors

作者
通讯作者Mu, Zihao
DOI
发表日期
2020
会议名称
IEEE/IAPR International Joint Conference on Biometrics (IJCB)
ISSN
2474-9680
ISBN
978-1-7281-9187-4
会议录名称
页码
1-8
会议日期
SEP 28-OCT 01, 2020
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Gait is a popular biometric pattern used for identifying people based on their way of walking. Traditionally, gait recognition approaches based on deep learning are trained using the whole training dataset. In fact, if new data (classes, view-points, walking conditions, etc.) need to be included, it is necessary to re-train again the model with old and new data samples. In this paper, we propose iLGaCo, the first incremental learning approach of covariate factors for gait recognition, where the deep model can be updated with new information without re-training it from scratch by using the whole dataset. Instead, our approach performs a shorter training process with the new data and a small subset of previous samples. This way, our model learns new information while retaining previous knowledge. We evaluate iLGaCo on CASIA-B dataset in two incremental ways: adding new view-points and adding new walking conditions. In both cases, our results are close to the classical 'training-from-scratch' approach, obtaining a marginal drop in accuracy ranging from 0.2% to 1.2%, what shows the efficacy of our approach. In addition, the comparison of iLGaCo with other incremental learning methods, such as LwF and iCarl, shows a significant improvement in accuracy, between 6% and 15% depending on the experiment.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
Spanish Ministry of Science and Technology["TIN2016-80920R","RED2018102511-T"]
WOS研究方向
Computer Science ; Engineering ; Mathematical & Computational Biology
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Mathematical & Computational Biology
WOS记录号
WOS:000723870900004
EI入藏号
20210409828150
EI主题词
Biometrics ; Deep learning ; Gait analysis
EI分类号
Bioengineering and Biology:461 ; Biomechanics, Bionics and Biomimetics:461.3
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9304857
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221921
专题工学院_计算机科学与工程系
作者单位
1.Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Guangdong, Peoples R China
2.Univ Malaga, Dept Comp Architecture, Malaga, Spain
3.Univ Cordoba, Dept Comp & Numer Anal, Cordoba, Spain
4.Shenzhen Inst Artificial Intelligence & Robot Soc, Shenzhen, Guangdong, Peoples R China
5.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Guangdong, Peoples R China
推荐引用方式
GB/T 7714
Mu, Zihao,Castro, Francisco M.,Marin-Jimenez, Manuel J.,et al. iLGaCo: Incremental Learning of Gait Covariate Factors[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1-8.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Mu, Zihao]的文章
[Castro, Francisco M.]的文章
[Marin-Jimenez, Manuel J.]的文章
百度学术
百度学术中相似的文章
[Mu, Zihao]的文章
[Castro, Francisco M.]的文章
[Marin-Jimenez, Manuel J.]的文章
必应学术
必应学术中相似的文章
[Mu, Zihao]的文章
[Castro, Francisco M.]的文章
[Marin-Jimenez, Manuel J.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。