中文版 | English
题名

MultiMix: A Multi-Task Deep Learning Approach for Travel Mode Identification with Few GPS Data

作者
通讯作者Yu,James J.Q.
DOI
发表日期
2020-09-20
会议名称
2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)
ISBN
978-1-7281-4150-3
会议录名称
页码
1-6
会议日期
20-23 Sept. 2020
会议地点
Rhodes, Greece
摘要

Understanding how people choose to travel is essential for intelligent transportation planning and related smart services. Recent advances in deep learning, coupled with the increasing market penetration of GPS devices, have paved the way for novel travel mode identification methods based on GPS data mining. While many have shown promising results, most methods have often relied heavily on the few available labeled data, leaving large amounts of unlabeled ones unused. To address this issue, we propose MultiMix, a semi-supervised multi-task learning framework for travel mode identification. Our framework trains a deep autoencoder using batches of labeled, unlabeled, and synthetic data by simultaneously optimizing three corresponding objective functions. We show that MultiMix outperforms several fully-and semi-supervised baselines, achieving a classification accuracy of 66.2% on Geolife using just 1% of labeled data, with accuracy reaching 84.8% when incorporating all available labels. We also verify the necessity of its components through an ablation study designed to provide insights into the proposed approach.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20210409824661
EI主题词
Data mining ; Global positioning system ; Intelligent systems ; Intelligent vehicle highway systems ; Labeled data ; Learning systems ; Multi-task learning ; Semi-supervised learning
EI分类号
Computer Software, Data Handling and Applications:723
Scopus记录号
2-s2.0-85099668170
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9294272
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221924
专题工学院_计算机科学与工程系
作者单位
1.Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Braininspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,China
2.Faculty of Engineering and Information Technology,University of Technology Sydney,Australia
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Song,Xiaozhuang,Markos,Christos,Yu,James J.Q.. MultiMix: A Multi-Task Deep Learning Approach for Travel Mode Identification with Few GPS Data[C],2020:1-6.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
MultiMix_A_Multi-Tas(336KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Song,Xiaozhuang]的文章
[Markos,Christos]的文章
[Yu,James J.Q.]的文章
百度学术
百度学术中相似的文章
[Song,Xiaozhuang]的文章
[Markos,Christos]的文章
[Yu,James J.Q.]的文章
必应学术
必应学术中相似的文章
[Song,Xiaozhuang]的文章
[Markos,Christos]的文章
[Yu,James J.Q.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。