题名 | MultiMix: A Multi-Task Deep Learning Approach for Travel Mode Identification with Few GPS Data |
作者 | |
通讯作者 | Yu,James J.Q. |
DOI | |
发表日期 | 2020-09-20
|
会议名称 | 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)
|
ISBN | 978-1-7281-4150-3
|
会议录名称 | |
页码 | 1-6
|
会议日期 | 20-23 Sept. 2020
|
会议地点 | Rhodes, Greece
|
摘要 | Understanding how people choose to travel is essential for intelligent transportation planning and related smart services. Recent advances in deep learning, coupled with the increasing market penetration of GPS devices, have paved the way for novel travel mode identification methods based on GPS data mining. While many have shown promising results, most methods have often relied heavily on the few available labeled data, leaving large amounts of unlabeled ones unused. To address this issue, we propose MultiMix, a semi-supervised multi-task learning framework for travel mode identification. Our framework trains a deep autoencoder using batches of labeled, unlabeled, and synthetic data by simultaneously optimizing three corresponding objective functions. We show that MultiMix outperforms several fully-and semi-supervised baselines, achieving a classification accuracy of 66.2% on Geolife using just 1% of labeled data, with accuracy reaching 84.8% when incorporating all available labels. We also verify the necessity of its components through an ablation study designed to provide insights into the proposed approach. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20210409824661
|
EI主题词 | Data mining
; Global positioning system
; Intelligent systems
; Intelligent vehicle highway systems
; Labeled data
; Learning systems
; Multi-task learning
; Semi-supervised learning
|
EI分类号 | Computer Software, Data Handling and Applications:723
|
Scopus记录号 | 2-s2.0-85099668170
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9294272 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/221924 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Braininspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,China 2.Faculty of Engineering and Information Technology,University of Technology Sydney,Australia |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Song,Xiaozhuang,Markos,Christos,Yu,James J.Q.. MultiMix: A Multi-Task Deep Learning Approach for Travel Mode Identification with Few GPS Data[C],2020:1-6.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
MultiMix_A_Multi-Tas(336KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论