中文版 | English
题名

Reconstruction of Missing Trajectory Data: A Deep Learning Approach

作者
通讯作者Yu,James J.Q.
DOI
发表日期
2020-09-20
会议名称
2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)
ISBN
978-1-7281-4150-3
会议录名称
页码
1-6
会议日期
20-23 Sept. 2020
会议地点
Rhodes, Greece
摘要

GPS trajectory data have become increasingly useful in traffic analysis and optimization. Nevertheless, due to sampling and communication-related issue, such trajectories suffer from data missing problems, and they further render a low quality of raw data for subsequent research. To address this problem, in this work, we propose a recurrent neural network based encoder-decoder deep learning approach. The head-direction information of trajectory, defined by the radius of curvature, is utilized together with the displacement attributed by an attention mechanism to learn from past trajectory points with different priority. Additionally, a smoothing data postprocessor is adopted to make the reconstructed trajectories authentic. To evaluate the performance of the proposed reconstruction approach, a series of comprehensive case studies are conducted, which indicates that the proposed approach significantly outperforms baselines, such as the reduction of the missing impact to the original data and improvement in the prediction accuracy.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20210409824684
EI主题词
Intelligent systems ; Intelligent vehicle highway systems ; Trajectories
EI分类号
Artificial Intelligence:723.4 ; Computer Applications:723.5
Scopus记录号
2-s2.0-85099665692
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9294402
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221925
专题工学院_计算机科学与工程系
作者单位
Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Braininspired Intelligent Computation,Department of Computer Science and Engineering,China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Wang,Ziwei,Zhang,Shiyao,Yu,James J.Q.. Reconstruction of Missing Trajectory Data: A Deep Learning Approach[C],2020:1-6.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Reconstruction_of_Mi(372KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang,Ziwei]的文章
[Zhang,Shiyao]的文章
[Yu,James J.Q.]的文章
百度学术
百度学术中相似的文章
[Wang,Ziwei]的文章
[Zhang,Shiyao]的文章
[Yu,James J.Q.]的文章
必应学术
必应学术中相似的文章
[Wang,Ziwei]的文章
[Zhang,Shiyao]的文章
[Yu,James J.Q.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。