题名 | Reconstruction of Missing Trajectory Data: A Deep Learning Approach |
作者 | |
通讯作者 | Yu,James J.Q. |
DOI | |
发表日期 | 2020-09-20
|
会议名称 | 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)
|
ISBN | 978-1-7281-4150-3
|
会议录名称 | |
页码 | 1-6
|
会议日期 | 20-23 Sept. 2020
|
会议地点 | Rhodes, Greece
|
摘要 | GPS trajectory data have become increasingly useful in traffic analysis and optimization. Nevertheless, due to sampling and communication-related issue, such trajectories suffer from data missing problems, and they further render a low quality of raw data for subsequent research. To address this problem, in this work, we propose a recurrent neural network based encoder-decoder deep learning approach. The head-direction information of trajectory, defined by the radius of curvature, is utilized together with the displacement attributed by an attention mechanism to learn from past trajectory points with different priority. Additionally, a smoothing data postprocessor is adopted to make the reconstructed trajectories authentic. To evaluate the performance of the proposed reconstruction approach, a series of comprehensive case studies are conducted, which indicates that the proposed approach significantly outperforms baselines, such as the reduction of the missing impact to the original data and improvement in the prediction accuracy. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20210409824684
|
EI主题词 | Intelligent systems
; Intelligent vehicle highway systems
; Trajectories
|
EI分类号 | Artificial Intelligence:723.4
; Computer Applications:723.5
|
Scopus记录号 | 2-s2.0-85099665692
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9294402 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/221925 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Braininspired Intelligent Computation,Department of Computer Science and Engineering,China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Wang,Ziwei,Zhang,Shiyao,Yu,James J.Q.. Reconstruction of Missing Trajectory Data: A Deep Learning Approach[C],2020:1-6.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Reconstruction_of_Mi(372KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论