中文版 | English
题名

Unsupervised Deep Learning for GPS-Based Transportation Mode Identification

作者
通讯作者Yu,James J.Q.
DOI
发表日期
2020-09-20
会议名称
2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)
ISBN
978-1-7281-4150-3
会议录名称
页码
1-6
会议日期
20-23 Sept. 2020
会议地点
Rhodes, Greece
摘要

Intelligent transportation management requires not only statistical information on users' mobility patterns, but also knowledge of their selected transportation modes. The latter can be inferred from users' GPS records, as captured by smartphone or vehicle sensors. The recently demonstrated prevalence of deep neural networks in learning from data makes them a promising candidate for transportation mode identification. However, the massive geospatial data produced by GPS sensors are typically unlabeled. To address this problem, we propose an unsupervised learning approach for transportation mode identification. Specifically, we first pretrain a deep Convolutional AutoEncoder (CAE) using unlabeled fixed-size trajectory segments. Then, we attach a clustering layer to the CAE's embedding layer, the former maintaining cluster centroids as trainable weights. Finally, we retrain the composite clustering model, encouraging the encoder's learned representation of the input data to be clustering-friendly by striking a balance between the model's reconstruction and clustering losses. By further incorporating features computed over each segment, we achieve a clustering accuracy of 80.5% on the Geolife dataset without using any labels. To the best of our knowledge, this is the first work to leverage unsupervised deep learning for clustering of GPS trajectory data by transportation mode.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20210409824542
EI主题词
Deep neural networks ; Intelligent systems ; Intelligent vehicle highway systems ; Knowledge management
EI分类号
Artificial Intelligence:723.4 ; Computer Applications:723.5
Scopus记录号
2-s2.0-85099657494
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9294673
引用统计
被引频次[WOS]:5
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221926
专题工学院_计算机科学与工程系
作者单位
1.Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,China
2.Faculty of Engineering and Information Technology,University of Technology Sydney,Australia
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Markos,Christos,Yu,James J.Q.. Unsupervised Deep Learning for GPS-Based Transportation Mode Identification[C],2020:1-6.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Unsupervised_Deep_Le(1234KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Markos,Christos]的文章
[Yu,James J.Q.]的文章
百度学术
百度学术中相似的文章
[Markos,Christos]的文章
[Yu,James J.Q.]的文章
必应学术
必应学术中相似的文章
[Markos,Christos]的文章
[Yu,James J.Q.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。