题名 | Unsupervised Deep Learning for GPS-Based Transportation Mode Identification |
作者 | |
通讯作者 | Yu,James J.Q. |
DOI | |
发表日期 | 2020-09-20
|
会议名称 | 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)
|
ISBN | 978-1-7281-4150-3
|
会议录名称 | |
页码 | 1-6
|
会议日期 | 20-23 Sept. 2020
|
会议地点 | Rhodes, Greece
|
摘要 | Intelligent transportation management requires not only statistical information on users' mobility patterns, but also knowledge of their selected transportation modes. The latter can be inferred from users' GPS records, as captured by smartphone or vehicle sensors. The recently demonstrated prevalence of deep neural networks in learning from data makes them a promising candidate for transportation mode identification. However, the massive geospatial data produced by GPS sensors are typically unlabeled. To address this problem, we propose an unsupervised learning approach for transportation mode identification. Specifically, we first pretrain a deep Convolutional AutoEncoder (CAE) using unlabeled fixed-size trajectory segments. Then, we attach a clustering layer to the CAE's embedding layer, the former maintaining cluster centroids as trainable weights. Finally, we retrain the composite clustering model, encouraging the encoder's learned representation of the input data to be clustering-friendly by striking a balance between the model's reconstruction and clustering losses. By further incorporating features computed over each segment, we achieve a clustering accuracy of 80.5% on the Geolife dataset without using any labels. To the best of our knowledge, this is the first work to leverage unsupervised deep learning for clustering of GPS trajectory data by transportation mode. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20210409824542
|
EI主题词 | Deep neural networks
; Intelligent systems
; Intelligent vehicle highway systems
; Knowledge management
|
EI分类号 | Artificial Intelligence:723.4
; Computer Applications:723.5
|
Scopus记录号 | 2-s2.0-85099657494
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9294673 |
引用统计 |
被引频次[WOS]:5
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/221926 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Southern University of Science and Technology,Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,Department of Computer Science and Engineering,Shenzhen,China 2.Faculty of Engineering and Information Technology,University of Technology Sydney,Australia |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Markos,Christos,Yu,James J.Q.. Unsupervised Deep Learning for GPS-Based Transportation Mode Identification[C],2020:1-6.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Unsupervised_Deep_Le(1234KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论