题名 | Visual Perception Based Situation Analysis of Traffic Scenes for Autonomous Driving Applications |
作者 | |
通讯作者 | Hao,Qi |
DOI | |
发表日期 | 2020-09-20
|
会议名称 | 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)
|
ISBN | 978-1-7281-4150-3
|
会议录名称 | |
页码 | 1-7
|
会议日期 | 20-23 Sept. 2020
|
会议地点 | Rhodes, Greece
|
摘要 | The major challenges for analyzing the situation of traffic scenes include defining proper metrics and achieving computation efficiency. This paper proposes two new situation metrics, a multimodality scene model, and a metrics computing network for traffic scene analysis. The main novelty is threefold. (1) The planning complexity and perception complexity are proposed as the situation metrics of traffic senes. (2) A multimodality model is proposed to describe traffic scenes, which combines the information of the static environment, dynamic objects, and ego-vehicle. (3) A deep neural network (DNN) based computing network is proposed to compute the two situation metrics based on scene models. Using the Nuscenes dataset, a high-level dataset for traffic scene analysis is developed to validate the scene model and the situation metrics computing network. The experiment results show that the proposed scene model is effective for situation analysis and the proposed situation metrics computing network outperforms than traditional CNN methods. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20210409824716
|
EI主题词 | Deep neural networks
; Intelligent systems
; Intelligent vehicle highway systems
|
EI分类号 | Computer Systems and Equipment:722
; Artificial Intelligence:723.4
; Computer Applications:723.5
|
Scopus记录号 | 2-s2.0-85099648260
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9294488 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/221928 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Sifakis Research Institute for Trustworthy Autonomous Systems,Southern University of Science and Technology,SUSTech-Haylion Center for Intelligent Transportation,Department of Computer Science and Engineering,Shenzhen, Guangdong,518055,China 2.Harbin Institute of Technology,Nan Gang District, Harbin,92West Dazhi Street,150001,China 3.Intel Collaborative Research Institute and Automated Connected Vehicles, |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Sun,Yao,Li,Dachuan,Wu,Xiangbin,et al. Visual Perception Based Situation Analysis of Traffic Scenes for Autonomous Driving Applications[C],2020:1-7.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Visual_Perception_Ba(1813KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论