中文版 | English
题名

Visual Perception Based Situation Analysis of Traffic Scenes for Autonomous Driving Applications

作者
通讯作者Hao,Qi
DOI
发表日期
2020-09-20
会议名称
2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)
ISBN
978-1-7281-4150-3
会议录名称
页码
1-7
会议日期
20-23 Sept. 2020
会议地点
Rhodes, Greece
摘要

The major challenges for analyzing the situation of traffic scenes include defining proper metrics and achieving computation efficiency. This paper proposes two new situation metrics, a multimodality scene model, and a metrics computing network for traffic scene analysis. The main novelty is threefold. (1) The planning complexity and perception complexity are proposed as the situation metrics of traffic senes. (2) A multimodality model is proposed to describe traffic scenes, which combines the information of the static environment, dynamic objects, and ego-vehicle. (3) A deep neural network (DNN) based computing network is proposed to compute the two situation metrics based on scene models. Using the Nuscenes dataset, a high-level dataset for traffic scene analysis is developed to validate the scene model and the situation metrics computing network. The experiment results show that the proposed scene model is effective for situation analysis and the proposed situation metrics computing network outperforms than traditional CNN methods.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20210409824716
EI主题词
Deep neural networks ; Intelligent systems ; Intelligent vehicle highway systems
EI分类号
Computer Systems and Equipment:722 ; Artificial Intelligence:723.4 ; Computer Applications:723.5
Scopus记录号
2-s2.0-85099648260
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9294488
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221928
专题工学院_计算机科学与工程系
作者单位
1.Sifakis Research Institute for Trustworthy Autonomous Systems,Southern University of Science and Technology,SUSTech-Haylion Center for Intelligent Transportation,Department of Computer Science and Engineering,Shenzhen, Guangdong,518055,China
2.Harbin Institute of Technology,Nan Gang District, Harbin,92West Dazhi Street,150001,China
3.Intel Collaborative Research Institute and Automated Connected Vehicles,
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Sun,Yao,Li,Dachuan,Wu,Xiangbin,et al. Visual Perception Based Situation Analysis of Traffic Scenes for Autonomous Driving Applications[C],2020:1-7.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Visual_Perception_Ba(1813KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Sun,Yao]的文章
[Li,Dachuan]的文章
[Wu,Xiangbin]的文章
百度学术
百度学术中相似的文章
[Sun,Yao]的文章
[Li,Dachuan]的文章
[Wu,Xiangbin]的文章
必应学术
必应学术中相似的文章
[Sun,Yao]的文章
[Li,Dachuan]的文章
[Wu,Xiangbin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。