中文版 | English
题名

Understanding Performance Concerns in the API Documentation of Data Science Libraries

作者
DOI
发表日期
2020-09-01
ISSN
1938-4300
ISBN
978-1-7281-7281-1
会议录名称
页码
895-906
会议日期
21-25 Sept. 2020
会议地点
Melbourne, VIC, Australia
摘要
The development of efficient data science applications is often impeded by unbearably long execution time and rapid RAM exhaustion. Since API documentation is the primary information source for troubleshooting, we investigate how performance concerns are documented in popular data science libraries. Our quantitative results reveal the prevalence of data science APIs that are documented in performance-related context and the infrequent maintenance activities on such documentation. Our qualitative analyses further reveal that crowd documentation like Stack Overflow and GitHub are highly complementary to official documentation in terms of the API coverage, the knowledge distribution, as well as the specific information conveyed through performance-related content. Data science practitioners could benefit from our findings by learning a more targeted search strategy for resolving performance issues. Researchers can be more assured of the advantages of integrating both the official and the crowd documentation to achieve a holistic view on the performance concerns in data science development.
关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
WOS记录号
WOS:000651313500075
EI入藏号
20210309773487
EI主题词
Application programming interfaces (API) ; Libraries ; Software engineering
EI分类号
Computer Software, Data Handling and Applications:723 ; Computer Programming:723.1 ; Libraries:903.4.1
Scopus记录号
2-s2.0-85099237019
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9286046
引用统计
被引频次[WOS]:3
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221931
专题工学院_计算机科学与工程系
作者单位
1.College of Computer Science and Software,Engineering Shenzhen University,China
2.Southern University of Science and Technology,Department of Computer Science and Engineering,China
3.School of Computing,Engr. Digital Technologies,Teesside University,United Kingdom
推荐引用方式
GB/T 7714
Tao,Yida,Jiang,Jiefang,Liu,Yepang,et al. Understanding Performance Concerns in the API Documentation of Data Science Libraries[C],2020:895-906.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tao,Yida]的文章
[Jiang,Jiefang]的文章
[Liu,Yepang]的文章
百度学术
百度学术中相似的文章
[Tao,Yida]的文章
[Jiang,Jiefang]的文章
[Liu,Yepang]的文章
必应学术
必应学术中相似的文章
[Tao,Yida]的文章
[Jiang,Jiefang]的文章
[Liu,Yepang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。