中文版 | English
题名

Arbitrary-Shaped Building Boundary-Aware Detection with Pixel Aggregation Network

作者
发表日期
2020
DOI
发表期刊
ISSN
1939-1404
EISSN
2151-1535
摘要
Large-scale building extraction is an essential work in the field of remote sensing image analysis. The high-resolution image extraction methods based on deep learning have achieved state-of-the-art performance. However, most of the previous work has focused on region accuracy rather than boundary quality. Aiming at the low accuracy problems and incomplete boundary of the building extraction method, we propose an architecture that optimizes the boundaries of buildings, BAPANet. Notably, the architecture consists of an encoder-decoder network and residual refinement modules responsible for prediction and refinement, respectively. The objective function optimizes the network in the form of three levels (pixel, feature map, and patch) by fusing three loss functions: binary cross-entropy (BCE), intersection over-union (IoU) and structural similarity (SSIM). The five public datasets' experimental results show that the extraction method in this paper has high region accuracy, and the boundary of buildings is clear and complete.
关键词
相关链接[Scopus记录]
语种
英语
学校署名
第一
Scopus记录号
2-s2.0-85102640774
来源库
Scopus
引用统计
被引频次[WOS]:12
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221966
专题工学院_环境科学与工程学院
作者单位
1.School of Environmental Science & Engineering, Southern University of Science and Technology, 255310 Shenzhen, Guangdong China (e-mail: jiangxiaobaix@outlook.com)
2.School of Geographical Sciences, Guangzhou University, 47875 Guangzhou, Guangdong China (e-mail: eeszxc@mail.sysu.edu.cn)
3.Department of Geography and Planning, Sun Yat-Sen University, 26469 Guangzhou, Guangdong China (e-mail: xinqinchuan@mail.sysu.edu.cn)
4.School of Environmental Science and Engineering, Suzhou University of Science and Technology, 66339 Suzhou, Jiangsu China (e-mail: xixu2016sysu@outlook.com)
5.Guangzhou Urban planing & design survey research institute, Guangzhou University, 47875 Guangzhou, Guangdong China (e-mail: 232323@qq.com)
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Jiang,Xin,Zhang,Xinchang,Xin,Qinchuan,et al. Arbitrary-Shaped Building Boundary-Aware Detection with Pixel Aggregation Network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020.
APA
Jiang,Xin,Zhang,Xinchang,Xin,Qinchuan,Xi,Xu,&Zhang,Pengcheng.(2020).Arbitrary-Shaped Building Boundary-Aware Detection with Pixel Aggregation Network.IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.
MLA
Jiang,Xin,et al."Arbitrary-Shaped Building Boundary-Aware Detection with Pixel Aggregation Network".IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (2020).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiang,Xin]的文章
[Zhang,Xinchang]的文章
[Xin,Qinchuan]的文章
百度学术
百度学术中相似的文章
[Jiang,Xin]的文章
[Zhang,Xinchang]的文章
[Xin,Qinchuan]的文章
必应学术
必应学术中相似的文章
[Jiang,Xin]的文章
[Zhang,Xinchang]的文章
[Xin,Qinchuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。