题名 | On the rost divisibility of henselian discrete valuation fields of cohomological dimension 3 |
作者 | |
发表日期 | 2020
|
DOI | |
发表期刊 | |
ISSN | 2379-1683
|
EISSN | 2379-1691
|
卷号 | 5期号:4页码:677-707 |
摘要 | Let F be a field, ℓ a prime and D a central division F-algebra of ℓ-power degree. By the Rost kernel of D we mean the subgroup of F* consisting of elements Λ such that the cohomology class (D)U(Λ)εH(F,Qℓ/Zℓ(2)) vanishes. In 1985, Suslin conjectured that the Rost kernel is generated by i-th powers of reduced norms from D for all i≥1. Despite known counterexamples, we prove some new special cases of Suslin’s conjecture. We assume F is a henselian discrete valuation field with residue field k of characteristic different from ℓ. When D has period ℓ, we show that Suslin’s conjecture holds if either k is a 2-local field or the cohomological ℓ-dimension cdℓ(k) of k is ≤ 2. When the period is arbitrary, we prove the same result when k itself is a henselian discrete valuation field with cdℓ(k) ≤ 2. In the case ℓ D char(k), an analog is obtained for tamely ramified algebras. We conjecture that Suslin’s conjecture holds for all fields of cohomological dimension 3. |
关键词 | |
相关链接 | [Scopus记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/221971 |
专题 | 理学院_数学系 |
作者单位 | 1.Department of Mathematics,Southern University of Science and Technology,Shenzhen, Guangdong,China 2.Department of Mathematics,Shantou University,Shantou, Guangdong,China |
第一作者单位 | 数学系 |
第一作者的第一单位 | 数学系 |
推荐引用方式 GB/T 7714 |
Hu,Yong,Wu,Zhengyao. On the rost divisibility of henselian discrete valuation fields of cohomological dimension 3[J]. Annals of K-Theory,2020,5(4):677-707.
|
APA |
Hu,Yong,&Wu,Zhengyao.(2020).On the rost divisibility of henselian discrete valuation fields of cohomological dimension 3.Annals of K-Theory,5(4),677-707.
|
MLA |
Hu,Yong,et al."On the rost divisibility of henselian discrete valuation fields of cohomological dimension 3".Annals of K-Theory 5.4(2020):677-707.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
(2020) Hu-Wu, On the(791KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论