中文版 | English
题名

Mean-variance portfolio selection for partially observed point processes

作者
发表日期
2020
DOI
发表期刊
ISSN
0363-0129
卷号58期号:6页码:3041-3061
摘要
We study the mean-variance portfolio selection problem for a class of price models, which well fit the two features of time-stamped transactions data. The price process of each stock is described by a collection of partially observed point processes. They are the noisy observation of an intrinsic value process, assumed to be Markovian. However, the control problem with partial information is non-Markovian and depends on an infinite-dimensional measure-valued input. To solve the challenging problem, we first establish a separation principle, which divides the filtering and the control problems and reduces the infinite-dimensional input to finite-dimensional ones. Building upon the result of nonlinear filtering with counting process observations, we solve the control problem by employing the stochastic maximum principle for control with forward-backward SDEs developed in [SIAM J. Control Optim., 48 (2009), pp. 2945-2976]. We explicitly obtain the efficient frontier and derive the optimal strategy, which is based on the filtering estimators.
关键词
相关链接[Scopus记录]
收录类别
SCI ; SSCI ; CPCI-S ; EI
语种
英语
学校署名
第一
WOS记录号
WOS:000600685600002
EI入藏号
20204809560693
EI主题词
Stochastic systems ; Information filtering ; Nonlinear equations ; Nonlinear filtering
EI分类号
Information Theory and Signal Processing:716.1 ; Control Systems:731.1 ; Information Sources and Analysis:903.1 ; Systems Science:961
ESI学科分类
ENGINEERING
Scopus记录号
2-s2.0-85096764061
来源库
Scopus
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221989
专题理学院_数学系
深圳国际数学中心(杰曼诺夫数学中心)(筹)
作者单位
1.Department of Mathematics,SUSTech International Center for Mathematics,Southern University of Science and Technology,Shenzhen,China
2.Department of Mathematics and Statistics,University of Missouri at Kansas City,Kansas City,64110,United States
3.School of Mathematics,China University of Mining and Technology,Xuzhou,China
第一作者单位数学系;  深圳国际数学中心(杰曼诺夫数学中心)(筹)
第一作者的第一单位数学系;  深圳国际数学中心(杰曼诺夫数学中心)(筹)
推荐引用方式
GB/T 7714
Xiong,Jie,Zeng,Yong,Zhang,Shuaiqi. Mean-variance portfolio selection for partially observed point processes[J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION,2020,58(6):3041-3061.
APA
Xiong,Jie,Zeng,Yong,&Zhang,Shuaiqi.(2020).Mean-variance portfolio selection for partially observed point processes.SIAM JOURNAL ON CONTROL AND OPTIMIZATION,58(6),3041-3061.
MLA
Xiong,Jie,et al."Mean-variance portfolio selection for partially observed point processes".SIAM JOURNAL ON CONTROL AND OPTIMIZATION 58.6(2020):3041-3061.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xiong,Jie]的文章
[Zeng,Yong]的文章
[Zhang,Shuaiqi]的文章
百度学术
百度学术中相似的文章
[Xiong,Jie]的文章
[Zeng,Yong]的文章
[Zhang,Shuaiqi]的文章
必应学术
必应学术中相似的文章
[Xiong,Jie]的文章
[Zeng,Yong]的文章
[Zhang,Shuaiqi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。