题名 | Draft and edit: Automatic storytelling through multi-pass hierarchical conditional variational autoencoder |
作者 | |
通讯作者 | Yan,Rui |
发表日期 | 2020
|
会议名称 | 34th AAAI Conference on Artificial Intelligence / 32nd Innovative Applications of Artificial Intelligence Conference / 10th AAAI Symposium on Educational Advances in Artificial Intelligence
|
ISSN | 2159-5399
|
EISSN | 2374-3468
|
会议录名称 | |
卷号 | 34
|
页码 | 1741-1748
|
会议日期 | FEB 07-12, 2020
|
会议地点 | null,New York,NY
|
出版地 | 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
|
出版者 | |
摘要 | Automatic Storytelling has consistently been a challenging area in the field of natural language processing. Despite considerable achievements have been made, the gap between automatically generated stories and human-written stories is still significant. Moreover, the limitations of existing automatic storytelling methods are obvious, e.g., the consistency of content, wording diversity. In this paper, we proposed a multi-pass hierarchical conditional variational autoencoder model to overcome the challenges and limitations in existing automatic storytelling models. While the conditional variational autoencoder (CVAE) model has been employed to generate diversified content, the hierarchical structure and multi-pass editing scheme allow the story to create more consistent content. We conduct extensive experiments on the ROCStories Dataset. The results verified the validity and effectiveness of our proposed model and yields substantial improvement over the existing state-of-the-art approaches. |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
资助项目 | National Key Research and Development Program of China[2017YFC0804001]
; National Science Foundation of China (NSFC)[61876196,61672058,61802163]
; Guangdong Natural Science Foundation[2018A030310129]
; PCL Future Regional Network Facilities for Large-scale Experiments and Applications[PCL2018KP001]
|
WOS研究方向 | Computer Science
; Education & Educational Research
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Interdisciplinary Applications
; Education, Scientific Disciplines
|
WOS记录号 | WOS:000667722801099
|
EI入藏号 | 20210509848655
|
EI主题词 | Learning systems
; Natural language processing systems
|
EI分类号 | Data Processing and Image Processing:723.2
; Artificial Intelligence:723.4
|
Scopus记录号 | 2-s2.0-85095866116
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:11
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/221990 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Wangxuan Institute of Computer Technology,Peking University,Beijing,China 2.Key Laboratory of Artificial Intelligence,Ministry of Education,Shanghai Jiao Tong University,Shanghai,200240,China 3.Center for Data Science,AAIS,Peking University,Beijing,China 4.Department of Computer Science and Engineering,Southern University of Science and Technology, 5.Tencent AI Lab, |
推荐引用方式 GB/T 7714 |
Yu,Meng Hsuan,Li,Juntao,Liu,Danyang,et al. Draft and edit: Automatic storytelling through multi-pass hierarchical conditional variational autoencoder[C]. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE,2020:1741-1748.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论