中文版 | English
题名

Draft and edit: Automatic storytelling through multi-pass hierarchical conditional variational autoencoder

作者
通讯作者Yan,Rui
发表日期
2020
会议名称
34th AAAI Conference on Artificial Intelligence / 32nd Innovative Applications of Artificial Intelligence Conference / 10th AAAI Symposium on Educational Advances in Artificial Intelligence
ISSN
2159-5399
EISSN
2374-3468
会议录名称
卷号
34
页码
1741-1748
会议日期
FEB 07-12, 2020
会议地点
null,New York,NY
出版地
2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA
出版者
摘要
Automatic Storytelling has consistently been a challenging area in the field of natural language processing. Despite considerable achievements have been made, the gap between automatically generated stories and human-written stories is still significant. Moreover, the limitations of existing automatic storytelling methods are obvious, e.g., the consistency of content, wording diversity. In this paper, we proposed a multi-pass hierarchical conditional variational autoencoder model to overcome the challenges and limitations in existing automatic storytelling models. While the conditional variational autoencoder (CVAE) model has been employed to generate diversified content, the hierarchical structure and multi-pass editing scheme allow the story to create more consistent content. We conduct extensive experiments on the ROCStories Dataset. The results verified the validity and effectiveness of our proposed model and yields substantial improvement over the existing state-of-the-art approaches.
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
资助项目
National Key Research and Development Program of China[2017YFC0804001] ; National Science Foundation of China (NSFC)[61876196,61672058,61802163] ; Guangdong Natural Science Foundation[2018A030310129] ; PCL Future Regional Network Facilities for Large-scale Experiments and Applications[PCL2018KP001]
WOS研究方向
Computer Science ; Education & Educational Research
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Education, Scientific Disciplines
WOS记录号
WOS:000667722801099
EI入藏号
20210509848655
EI主题词
Learning systems ; Natural language processing systems
EI分类号
Data Processing and Image Processing:723.2 ; Artificial Intelligence:723.4
Scopus记录号
2-s2.0-85095866116
来源库
Scopus
引用统计
被引频次[WOS]:11
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/221990
专题工学院_计算机科学与工程系
作者单位
1.Wangxuan Institute of Computer Technology,Peking University,Beijing,China
2.Key Laboratory of Artificial Intelligence,Ministry of Education,Shanghai Jiao Tong University,Shanghai,200240,China
3.Center for Data Science,AAIS,Peking University,Beijing,China
4.Department of Computer Science and Engineering,Southern University of Science and Technology,
5.Tencent AI Lab,
推荐引用方式
GB/T 7714
Yu,Meng Hsuan,Li,Juntao,Liu,Danyang,et al. Draft and edit: Automatic storytelling through multi-pass hierarchical conditional variational autoencoder[C]. 2275 E BAYSHORE RD, STE 160, PALO ALTO, CA 94303 USA:ASSOC ADVANCEMENT ARTIFICIAL INTELLIGENCE,2020:1741-1748.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yu,Meng Hsuan]的文章
[Li,Juntao]的文章
[Liu,Danyang]的文章
百度学术
百度学术中相似的文章
[Yu,Meng Hsuan]的文章
[Li,Juntao]的文章
[Liu,Danyang]的文章
必应学术
必应学术中相似的文章
[Yu,Meng Hsuan]的文章
[Li,Juntao]的文章
[Liu,Danyang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。