中文版 | English
题名

ANT-UNet: Accurate and Noise-Tolerant Segmentation for Pathology Image Processing

作者
通讯作者Hao Yu; Cheng Zhuo
发表日期
2021-12-31
DOI
发表期刊
卷号18期号:2页码:1-17
摘要

Pathology image segmentation is an essential step in early detection and diagnosis for various diseases. Due to its complex nature, precise segmentation is not a trivial task. Recently, deep learning has been proved as an effective option for pathology image processing. However, its efficiency is highly restricted by inconsistent annotation quality. In this article, we propose an accurate and noise-tolerant segmentation approach to overcome the aforementioned issues. This approach consists of two main parts: a preprocessing module for data augmentation and a new neural network architecture, ANT-UNet. Experimental results demonstrate that, even on a noisy dataset, the proposed approach can achieve more accurate segmentation with 6% to 35% accuracy improvement versus other commonly used segmentation methods. In addition, the proposed architecture is hardware friendly, which can reduce the amount of parameters to one-tenth of the original and achieve 1.7× speed-up.

收录类别
语种
英语
学校署名
通讯
WOS记录号
WOS:000789359000004
EI入藏号
20221912098501
EI主题词
Diagnosis ; Image segmentation ; Network architecture ; Pathology
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Medicine and Pharmacology:461.6
来源库
人工提交
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/222051
专题南方科技大学
工学院_深港微电子学院
作者单位
1.Zhejiang University, Hangzhou, Zhejiang Province, China
2.Southern University of Science and Technology, Shenzhen, Guangdong Province, China
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Yufei Chen,Tingtao Li,Qinming Zhang,et al. ANT-UNet: Accurate and Noise-Tolerant Segmentation for Pathology Image Processing[J]. ACM Journal on Emerging Technologies in Computing Systems,2021,18(2):1-17.
APA
Yufei Chen.,Tingtao Li.,Qinming Zhang.,Wei Mao.,Nan Guan.,...&Cheng Zhuo.(2021).ANT-UNet: Accurate and Noise-Tolerant Segmentation for Pathology Image Processing.ACM Journal on Emerging Technologies in Computing Systems,18(2),1-17.
MLA
Yufei Chen,et al."ANT-UNet: Accurate and Noise-Tolerant Segmentation for Pathology Image Processing".ACM Journal on Emerging Technologies in Computing Systems 18.2(2021):1-17.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yufei Chen]的文章
[Tingtao Li]的文章
[Qinming Zhang]的文章
百度学术
百度学术中相似的文章
[Yufei Chen]的文章
[Tingtao Li]的文章
[Qinming Zhang]的文章
必应学术
必应学术中相似的文章
[Yufei Chen]的文章
[Tingtao Li]的文章
[Qinming Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。