题名 | Reliability-Driven Neural Network Training for Memristive Crossbar-Based Neuromorphic Computing Systems |
作者 | |
通讯作者 | Wang, Junpeng |
DOI | |
发表日期 | 2020
|
会议名称 | IEEE International Symposium on Circuits and Systems (ISCAS)
|
ISSN | 0271-4302
|
ISBN | 978-1-7281-3320-1
|
会议录名称 | |
卷号 | 2020-October
|
页码 | 1-4
|
会议日期 | OCT 10-21, 2020
|
会议地点 | null,null,ELECTR NETWORK
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | In recent years, memristive crossbar-based neuromorphic computing systems (NCS) have provided a promising solution to the acceleration of neural networks. However, stuck-at faults (SAFs) in the memristor devices significantly degrade the computing accuracy of NCS. Besides, the memristor suffers from the process variations, causing deviation of the actual programming resistance from its target resistance. In this paper, we propose a reliability-driven network training framework for a memristive crossbar-based NCS, with taking account of both SAFs and device variations challenges. A dropout-inspired approach is first developed to alleviate the impact of SAFs. A new weighted error function, including cross-entropy error (CEE), the l(2)-norm of weights, and the sum of squares of first-order derivatives of CEE with respect to weights, is further proposed to obtain a smooth error curve, where the effects of variations are suppressed. Experimental results show that the proposed method can boost the computation accuracy of NCS and improve the NCS robustness. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China (NSFC)[61874102,61732020,61904047]
|
WOS研究方向 | Engineering
|
WOS类目 | Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000706854700106
|
EI入藏号 | 20212810618761
|
EI主题词 | Errors
; Memristors
|
EI分类号 | Semiconductor Devices and Integrated Circuits:714.2
|
来源库 | Web of Science
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9180923 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/222517 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Univ Sci & Technol China, Sch Microelect, Beijing, Peoples R China 2.USTC Beijing Res Inst, Beijing, Peoples R China 3.Hefei Univ Technol, Dept Elect Sci & Technol, Hefei, Anhui, Peoples R China 4.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Guangdong, Peoples R China 5.Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China |
推荐引用方式 GB/T 7714 |
Wang, Junpeng,Xu, Qi,Yuan, Bo,et al. Reliability-Driven Neural Network Training for Memristive Crossbar-Based Neuromorphic Computing Systems[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1-4.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
C95-ISCAS2020-VT-NCS(335KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论