中文版 | English
题名

Reliability-Driven Neural Network Training for Memristive Crossbar-Based Neuromorphic Computing Systems

作者
通讯作者Wang, Junpeng
DOI
发表日期
2020
会议名称
IEEE International Symposium on Circuits and Systems (ISCAS)
ISSN
0271-4302
ISBN
978-1-7281-3320-1
会议录名称
卷号
2020-October
页码
1-4
会议日期
OCT 10-21, 2020
会议地点
null,null,ELECTR NETWORK
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
In recent years, memristive crossbar-based neuromorphic computing systems (NCS) have provided a promising solution to the acceleration of neural networks. However, stuck-at faults (SAFs) in the memristor devices significantly degrade the computing accuracy of NCS. Besides, the memristor suffers from the process variations, causing deviation of the actual programming resistance from its target resistance. In this paper, we propose a reliability-driven network training framework for a memristive crossbar-based NCS, with taking account of both SAFs and device variations challenges. A dropout-inspired approach is first developed to alleviate the impact of SAFs. A new weighted error function, including cross-entropy error (CEE), the l(2)-norm of weights, and the sum of squares of first-order derivatives of CEE with respect to weights, is further proposed to obtain a smooth error curve, where the effects of variations are suppressed. Experimental results show that the proposed method can boost the computation accuracy of NCS and improve the NCS robustness.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China (NSFC)[61874102,61732020,61904047]
WOS研究方向
Engineering
WOS类目
Engineering, Electrical & Electronic
WOS记录号
WOS:000706854700106
EI入藏号
20212810618761
EI主题词
Errors ; Memristors
EI分类号
Semiconductor Devices and Integrated Circuits:714.2
来源库
Web of Science
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9180923
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/222517
专题工学院_计算机科学与工程系
作者单位
1.Univ Sci & Technol China, Sch Microelect, Beijing, Peoples R China
2.USTC Beijing Res Inst, Beijing, Peoples R China
3.Hefei Univ Technol, Dept Elect Sci & Technol, Hefei, Anhui, Peoples R China
4.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Guangdong, Peoples R China
5.Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China
推荐引用方式
GB/T 7714
Wang, Junpeng,Xu, Qi,Yuan, Bo,et al. Reliability-Driven Neural Network Training for Memristive Crossbar-Based Neuromorphic Computing Systems[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:1-4.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
C95-ISCAS2020-VT-NCS(335KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Junpeng]的文章
[Xu, Qi]的文章
[Yuan, Bo]的文章
百度学术
百度学术中相似的文章
[Wang, Junpeng]的文章
[Xu, Qi]的文章
[Yuan, Bo]的文章
必应学术
必应学术中相似的文章
[Wang, Junpeng]的文章
[Xu, Qi]的文章
[Yuan, Bo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。