中文版 | English
题名

Weak form theory-guided neural network (TgNN-wf) for deep learning of subsurface single- and two-phase flow

作者
通讯作者Zhang,Dongxiao
发表日期
2021-07-01
DOI
发表期刊
ISSN
0021-9991
EISSN
1090-2716
卷号436
摘要
Deep neural networks (DNNs) are widely used as surrogate models, and incorporating theoretical guidance into DNNs has improved generalizability. However, most such approaches define the loss function based on the strong form of conservation laws (via partial differential equations, PDEs), which is subject to diminished accuracy when the PDE has high-order derivatives or the solution has strong discontinuities. Herein, we propose a weak form Theory-guided Neural Network (TgNN-wf), which incorporates the weak form residual of the PDE into the loss function, combined with data constraint and initial and boundary condition regularizations, to overcome the aforementioned difficulties. The original loss minimization problem is reformulated into a Lagrangian duality problem, so that the weights of the terms in the loss function are optimized automatically. We use domain decomposition with locally-defined test functions, which captures local discontinuity effectively. Two numerical cases demonstrate the superiority of the proposed TgNN-wf over the strong form TgNN, including hydraulic head prediction for unsteady-state 2D single-phase flow problems and saturation profile prediction for 1D two-phase flow problems. Results show that TgNN-wf consistently achieves higher accuracy than TgNN, especially when strong discontinuity in the parameter or solution space is present. TgNN-wf also trains faster than TgNN when the number of integration subdomains is not too large (<10,000). Furthermore, TgNN-wf is more robust to noise. Consequently, the proposed TgNN-wf paves the way for which a variety of deep learning problems in small data regimes can be solved more accurately and efficiently.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
WOS研究方向
Computer Science ; Physics
WOS类目
Computer Science, Interdisciplinary Applications ; Physics, Mathematical
WOS记录号
WOS:000746492700016
出版者
EI入藏号
20211410182508
EI主题词
Boundary conditions ; Deep neural networks ; Domain decomposition methods ; Neural networks ; Two phase flow
EI分类号
Fluid Flow, General:631.1 ; Numerical Methods:921.6
ESI学科分类
PHYSICS
Scopus记录号
2-s2.0-85103574842
来源库
Scopus
引用统计
被引频次[WOS]:32
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/222605
专题工学院_环境科学与工程学院
工学院
作者单位
1.Intelligent Energy Laboratory,Peng Cheng Laboratory,Guangdong,China
2.School of Environmental Science and Engineering,Southern University of Science and Technology,Guangdong,China
3.College of Engineering,Peking University,Beijing,China
通讯作者单位环境科学与工程学院
推荐引用方式
GB/T 7714
Xu,Rui,Zhang,Dongxiao,Rong,Miao,et al. Weak form theory-guided neural network (TgNN-wf) for deep learning of subsurface single- and two-phase flow[J]. JOURNAL OF COMPUTATIONAL PHYSICS,2021,436.
APA
Xu,Rui,Zhang,Dongxiao,Rong,Miao,&Wang,Nanzhe.(2021).Weak form theory-guided neural network (TgNN-wf) for deep learning of subsurface single- and two-phase flow.JOURNAL OF COMPUTATIONAL PHYSICS,436.
MLA
Xu,Rui,et al."Weak form theory-guided neural network (TgNN-wf) for deep learning of subsurface single- and two-phase flow".JOURNAL OF COMPUTATIONAL PHYSICS 436(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xu,Rui]的文章
[Zhang,Dongxiao]的文章
[Rong,Miao]的文章
百度学术
百度学术中相似的文章
[Xu,Rui]的文章
[Zhang,Dongxiao]的文章
[Rong,Miao]的文章
必应学术
必应学术中相似的文章
[Xu,Rui]的文章
[Zhang,Dongxiao]的文章
[Rong,Miao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。