中文版 | English
题名

APRIL: Anatomical prior-guided reinforcement learning for accurate carotid lumen diameter and intima-media thickness measurement

作者
通讯作者Luo,Zhiming
发表日期
2021-07-01
DOI
发表期刊
ISSN
1361-8415
EISSN
1361-8423
卷号71
摘要
Carotid artery lumen diameter (CALD) and carotid artery intima-media thickness (CIMT) are essential factors for estimating the risk of many cardiovascular diseases. The automatic measurement of them in ultrasound (US) images is an efficient assisting diagnostic procedure. Despite the advances, existing methods still suffer the issue of low measuring accuracy and poor prediction stability, mainly due to the following disadvantages: (1) ignore anatomical prior and prone to give anatomically inaccurate estimation; (2) require carefully designed post-processing, which may introduce more estimation errors; (3) rely on massive pixel-wise annotations during training; (4) can not estimate the uncertainty of the predictions. In this study, we propose the Anatomical Prior-guided ReInforcement Learning model (APRIL), which innovatively formulate the measurement of CALD & CIMT as an RL problem and dynamically incorporate anatomical prior (AP) into the system through a novel reward. With the guidance of AP, the designed keypoints in APRIL can avoid various anatomy impossible mis-locations, and accurately measure the CALD & CIMT based on their corresponding locations. Moreover, this formulation significantly reduces human annotation effort by only using several keypoints and can help to eliminate the extra post-processing steps. Further, we introduce an uncertainty module for measuring the prediction variance, which can guide us to adaptively rectify the estimation of those frames with considerable uncertainty. Experiments on a challenging carotid US dataset show that APRIL can achieve MAE (in pixel/mm) of 3.02±2.23 / 0.18±0.13 for CALD, and 0.96±0.70 / 0.06±0.04 for CIMT, which significantly surpass popular approaches that use more annotations.
关键词
相关链接[Scopus记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Nature Science Foundation of China[61876159,61806172,"U1705286"] ; Fundamental Research Funds for the Central Universities, Xiamen University[20720200030] ; China Postdoctoral Science Foundation[2019M652257]
WOS研究方向
Computer Science ; Engineering ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:000663616000001
出版者
EI入藏号
20211410166807
EI主题词
Diagnosis ; Forecasting ; Pixels ; Reinforcement learning ; Risk perception ; Thickness measurement
EI分类号
Medicine and Pharmacology:461.6 ; Artificial Intelligence:723.4 ; Accidents and Accident Prevention:914.1 ; Probability Theory:922.1 ; Mechanical Variables Measurements:943.2
ESI学科分类
COMPUTER SCIENCE
Scopus记录号
2-s2.0-85103380805
来源库
Scopus
引用统计
被引频次[WOS]:12
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/222606
专题南方科技大学第二附属医院
作者单位
1.Department of Artificial Intelligence,Xiamen University,Xiamen,China
2.Department of Ultrasound,The Second Affiliated Hospital,Southern University of Science and Technology,Shenzhen Third Peoples Hospital,Shenzhen,China
3.Digital Image Group (DIG),London,Canada
4.School of Biomedical Engineering,Western University,London,Canada
推荐引用方式
GB/T 7714
Lian,Sheng,Luo,Zhiming,Feng,Cheng,et al. APRIL: Anatomical prior-guided reinforcement learning for accurate carotid lumen diameter and intima-media thickness measurement[J]. MEDICAL IMAGE ANALYSIS,2021,71.
APA
Lian,Sheng,Luo,Zhiming,Feng,Cheng,Li,Shaozi,&Li,Shuo.(2021).APRIL: Anatomical prior-guided reinforcement learning for accurate carotid lumen diameter and intima-media thickness measurement.MEDICAL IMAGE ANALYSIS,71.
MLA
Lian,Sheng,et al."APRIL: Anatomical prior-guided reinforcement learning for accurate carotid lumen diameter and intima-media thickness measurement".MEDICAL IMAGE ANALYSIS 71(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lian,Sheng]的文章
[Luo,Zhiming]的文章
[Feng,Cheng]的文章
百度学术
百度学术中相似的文章
[Lian,Sheng]的文章
[Luo,Zhiming]的文章
[Feng,Cheng]的文章
必应学术
必应学术中相似的文章
[Lian,Sheng]的文章
[Luo,Zhiming]的文章
[Feng,Cheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。