中文版 | English
题名

Improved Modeling of Spatiotemporal Variations of Fine Particulate Matter Using a Three-Dimensional Variational Data Fusion Method

作者
发表日期
2021-03-27
DOI
发表期刊
ISSN
2169-897X
EISSN
2169-8996
卷号126期号:6
摘要
The spatiotemporal concentration of multiple pollutants is crucial information for pollution control strategies to safeguard public health. Despite considerable efforts, however, significant uncertainty remains. In this study, a three-dimensional variational model is coupled with a data assimilation (DA) system to analyze the spatiotemporal variation of PM for the whole of China. Monthly simulations of six sensitivity scenarios in different seasons, including different assimilation cycles, are carried out to assess the impact of the assimilation frequency on the PM simulations and the model simulation accuracy afforded by DA. The results show that the coupled system provides more reliable initial fields to substantially improve the model performance for PM, PM, and O. Higher assimilation frequency improves the simulation in all geographic areas. Two statistical indicators—the root mean square error and the correlation coefficient of PM mass concentrations in the analysis field—are improved by 12.19 µg/m (33%) and 0.21 (48%), respectively. Although the 24-h assimilation cycle considerably improves the model, assimilation at a 6-h cycle raises the performance for PM to the performance goal level. The analysis shows that assimilating at a 24-h cycle diminishes over time, whereas the positive impact of the 6-h cycle persists. One pivotal finding is that the assimilation of PM in the outermost domain results in a substantial improvement in PM prediction for the innermost domain, which is a potential alternative method to the existing domain-wide data fusion algorithm. The effect of assimilation varies among topographies, a finding that provides essential support for further model development.
关键词
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
资助项目
NSFC Key Research Project[91644221] ; Research Grants Council of Hong Kong Government[T24/504/17]
WOS研究方向
Meteorology & Atmospheric Sciences
WOS类目
Meteorology & Atmospheric Sciences
WOS记录号
WOS:000634788300019
出版者
ESI学科分类
GEOSCIENCES
Scopus记录号
2-s2.0-85103018500
来源库
Scopus
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/222658
专题商学院
商学院_信息系统与管理工程系
作者单位
1.School of Management,Xi'an Jiaotong University,Xi'an,China
2.Division of Environment and Sustainability,The Hong Kong University of Science and Technology,Hong Kong
3.Department of Mathematics,The Hong Kong University of Science and Technology,Hong Kong
4.Department of Civil and Environmental Engineering,The Hong Kong University of Science and Technology,Hong Kong
5.Key Laboratory of Physical Oceanography,The College of Oceanic and Atmospheric Sciences & Institute for Advanced Ocean Study/Frontiers Science Center for Deep Ocean Multispheres and Earth System (DOMES),Ocean University of China,Qingdao,China
6.Qingdao Pilot National Laboratory for Marine Science and Technology,Qingdao,China
7.College of Business,Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Zhang,Xuguo,Fung,Jimmy C.H.,Lau,Alexis K.H.,et al. Improved Modeling of Spatiotemporal Variations of Fine Particulate Matter Using a Three-Dimensional Variational Data Fusion Method[J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,2021,126(6).
APA
Zhang,Xuguo,Fung,Jimmy C.H.,Lau,Alexis K.H.,Zhang,Shaoqing,&Huang,Wei.(2021).Improved Modeling of Spatiotemporal Variations of Fine Particulate Matter Using a Three-Dimensional Variational Data Fusion Method.JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES,126(6).
MLA
Zhang,Xuguo,et al."Improved Modeling of Spatiotemporal Variations of Fine Particulate Matter Using a Three-Dimensional Variational Data Fusion Method".JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 126.6(2021).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang,Xuguo]的文章
[Fung,Jimmy C.H.]的文章
[Lau,Alexis K.H.]的文章
百度学术
百度学术中相似的文章
[Zhang,Xuguo]的文章
[Fung,Jimmy C.H.]的文章
[Lau,Alexis K.H.]的文章
必应学术
必应学术中相似的文章
[Zhang,Xuguo]的文章
[Fung,Jimmy C.H.]的文章
[Lau,Alexis K.H.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。