中文版 | English
题名

Developing normalization schemes for data isolated distributed deep learning

作者
发表日期
2021
DOI
发表期刊
EISSN
2398-3396
卷号6页码:105-115
摘要
Distributed deep learning is an important and indispensable direction in the field of deep learning research. Earlier research has proposed many algorithms or techniques on accelerating distributed neural network training. This study discusses a new distributed training scenario, namely data isolated distributed deep learning. Specifically, each node has its own local data and cannot be shared for some reasons. However, in order to ensure the generalization of the model, the goal is to train a global model that required learning all the data, not just based on data from a local node. At this time, distributed training with data isolation is needed. An obvious challenge for distributed deep learning in this scenario is that the distribution of training data used by each node could be highly imbalanced because of data isolation. This brings difficulty to the normalization process in neural network training, because the traditional batch normalization (BN) method will fail under this kind of data imbalanced scenario. At this time, distributed training with data isolation is needed. Aiming at such data isolation scenarios, this study proposes a comprehensive data isolation deep learning scheme. Specifically, synchronous stochastic gradient descent algorithm is used for data exchange during training, and provides several normalization approaches to the problem of BN failure caused by data imbalance. Experimental results show the efficiency and accuracy of the proposed data isolated distributed deep learning scheme.
相关链接[Scopus记录]
收录类别
语种
英语
学校署名
其他
EI入藏号
20211410167577
EI主题词
Electronic data interchange ; Gradient methods ; Neural networks ; Stochastic systems
EI分类号
Data Processing and Image Processing:723.2 ; Numerical Methods:921.6 ; Systems Science:961
Scopus记录号
2-s2.0-85103405649
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/222752
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science,University of Warwick,Coventry,United Kingdom
2.Department of Computer Science and Engineering,Southern University of Science and Technology,Shenzhen,China
第一作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Zhou,Yujue,He,Ligang,Yang,Shuang Hua. Developing normalization schemes for data isolated distributed deep learning[J]. IET Cyber-Physical Systems: Theory and Applications,2021,6:105-115.
APA
Zhou,Yujue,He,Ligang,&Yang,Shuang Hua.(2021).Developing normalization schemes for data isolated distributed deep learning.IET Cyber-Physical Systems: Theory and Applications,6,105-115.
MLA
Zhou,Yujue,et al."Developing normalization schemes for data isolated distributed deep learning".IET Cyber-Physical Systems: Theory and Applications 6(2021):105-115.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhou,Yujue]的文章
[He,Ligang]的文章
[Yang,Shuang Hua]的文章
百度学术
百度学术中相似的文章
[Zhou,Yujue]的文章
[He,Ligang]的文章
[Yang,Shuang Hua]的文章
必应学术
必应学术中相似的文章
[Zhou,Yujue]的文章
[He,Ligang]的文章
[Yang,Shuang Hua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。