题名 | End-to-End Model-Based Gait Recognition |
作者 | |
通讯作者 | Li,Xiang |
DOI | |
发表日期 | 2021
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
会议录名称 | |
卷号 | 12624 LNCS
|
页码 | 3-20
|
摘要 | Most existing gait recognition approaches adopt a two-step procedure: a preprocessing step to extract silhouettes or skeletons followed by recognition. In this paper, we propose an end-to-end model-based gait recognition method. Specifically, we employ a skinned multi-person linear (SMPL) model for human modeling, and estimate its parameters using a pre-trained human mesh recovery (HMR) network. As the pre-trained HMR is not recognition-oriented, we fine-tune it in an end-to-end gait recognition framework. To cope with differences between gait datasets and those used for pre-training the HMR, we introduce a reconstruction loss between the silhouette masks in the gait datasets and the rendered silhouettes from the estimated SMPL model produced by a differentiable renderer. This enables us to adapt the HMR to the gait dataset without supervision using the ground-truth joint locations. Experimental results with the OU-MVLP and CASIA-B datasets demonstrate the state-of-the-art performance of the proposed method for both gait identification and verification scenarios, a direct consequence of the explicitly disentangled pose and shape features produced by the proposed end-to-end model-based framework. |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20211310152370
|
EI主题词 | Gait analysis
|
EI分类号 | Biomechanics, Bionics and Biomimetics:461.3
; Computer Applications:723.5
|
Scopus记录号 | 2-s2.0-85103277868
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/222769 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Nanjing University of Science and Technology,Nanjing,China 2.Osaka University,Osaka,Japan 3.Southern University of Science and Technology,Shenzhen,China |
推荐引用方式 GB/T 7714 |
Li,Xiang,Makihara,Yasushi,Xu,Chi,et al. End-to-End Model-Based Gait Recognition[C],2021:3-20.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论