中文版 | English
题名

End-to-End Model-Based Gait Recognition

作者
通讯作者Li,Xiang
DOI
发表日期
2021
ISSN
0302-9743
EISSN
1611-3349
会议录名称
卷号
12624 LNCS
页码
3-20
摘要
Most existing gait recognition approaches adopt a two-step procedure: a preprocessing step to extract silhouettes or skeletons followed by recognition. In this paper, we propose an end-to-end model-based gait recognition method. Specifically, we employ a skinned multi-person linear (SMPL) model for human modeling, and estimate its parameters using a pre-trained human mesh recovery (HMR) network. As the pre-trained HMR is not recognition-oriented, we fine-tune it in an end-to-end gait recognition framework. To cope with differences between gait datasets and those used for pre-training the HMR, we introduce a reconstruction loss between the silhouette masks in the gait datasets and the rendered silhouettes from the estimated SMPL model produced by a differentiable renderer. This enables us to adapt the HMR to the gait dataset without supervision using the ground-truth joint locations. Experimental results with the OU-MVLP and CASIA-B datasets demonstrate the state-of-the-art performance of the proposed method for both gait identification and verification scenarios, a direct consequence of the explicitly disentangled pose and shape features produced by the proposed end-to-end model-based framework.
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20211310152370
EI主题词
Gait analysis
EI分类号
Biomechanics, Bionics and Biomimetics:461.3 ; Computer Applications:723.5
Scopus记录号
2-s2.0-85103277868
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/222769
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Nanjing University of Science and Technology,Nanjing,China
2.Osaka University,Osaka,Japan
3.Southern University of Science and Technology,Shenzhen,China
推荐引用方式
GB/T 7714
Li,Xiang,Makihara,Yasushi,Xu,Chi,et al. End-to-End Model-Based Gait Recognition[C],2021:3-20.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Li,Xiang]的文章
[Makihara,Yasushi]的文章
[Xu,Chi]的文章
百度学术
百度学术中相似的文章
[Li,Xiang]的文章
[Makihara,Yasushi]的文章
[Xu,Chi]的文章
必应学术
必应学术中相似的文章
[Li,Xiang]的文章
[Makihara,Yasushi]的文章
[Xu,Chi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。