题名 | Probabilistic Latent Factor Model for Collaborative Filtering with Bayesian Inference |
作者 | |
通讯作者 | Jiang Liu |
DOI | |
发表日期 | 2020
|
会议名称 | 2020 25th International Conference on Pattern Recognition (ICPR)
|
ISSN | 1051-4651
|
ISBN | 978-1-7281-8809-6
|
会议录名称 | |
页码 | 73-80
|
会议日期 | 10-15 Jan. 2021
|
会议地点 | Milan, Italy
|
摘要 | Latent Factor Model (LFM) is one of the most successful methods for Collaborative filtering (CF) in the recommendation system, in which both users and items are projected into a joint latent factor space. Base on matrix factorization applied usually in pattern recognition, LFM models user-item interactions as inner products of factor vectors of user and item in that space and can be efficiently solved by least square methods with optimal estimation. However, such optimal estimation methods are prone to overfitting due to the extreme sparsity of user-item interactions. In this paper, we propose a Bayesian treatment for LFM, named Bayesian Latent Factor Model (BLFM). Based on observed user-item interactions, we build a probabilistic factor model in which the regularization is introduced via placing prior constraint on latent factors, and the likelihood function is established over observations and parameters. Then we draw samples of latent factors from the posterior distribution with Variational Inference (VI) to predict expected value. We further make an extension to BLFM, called BLFMBias, incorporating user-dependent and item-dependent biases into the model for enhancing performance. Extensive experiments on the movie rating dataset show the effectiveness of our proposed models by compared with several strong baselines. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
WOS记录号 | WOS:000678409200011
|
EI入藏号 | 20212910658885
|
EI主题词 | Bayesian networks
; Factorization
; Inference engines
; Least squares approximations
; Pattern recognition
; Vector spaces
|
EI分类号 | Expert Systems:723.4.1
; Information Sources and Analysis:903.1
; Mathematics:921
|
Scopus记录号 | 2-s2.0-85110470371
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9412376 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/222926 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.School of computer science and technology, Harbin Institute of Technology, Harbin 150001, China 2.Department of computer science and engineering, Southern University of Science and Technology, Shenzhen 518055, China 3.CVTE Research, Guangzhou 510530, China 4.Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences, Ningbo 315201, China |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Jiansheng Fang,Xiaoqing Zhang,Yan Hu,et al. Probabilistic Latent Factor Model for Collaborative Filtering with Bayesian Inference[C],2020:73-80.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
2012.03433.pdf(346KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论