中文版 | English
题名

Probabilistic Latent Factor Model for Collaborative Filtering with Bayesian Inference

作者
通讯作者Jiang Liu
DOI
发表日期
2020
会议名称
2020 25th International Conference on Pattern Recognition (ICPR)
ISSN
1051-4651
ISBN
978-1-7281-8809-6
会议录名称
页码
73-80
会议日期
10-15 Jan. 2021
会议地点
Milan, Italy
摘要

Latent Factor Model (LFM) is one of the most successful methods for Collaborative filtering (CF) in the recommendation system, in which both users and items are projected into a joint latent factor space. Base on matrix factorization applied usually in pattern recognition, LFM models user-item interactions as inner products of factor vectors of user and item in that space and can be efficiently solved by least square methods with optimal estimation. However, such optimal estimation methods are prone to overfitting due to the extreme sparsity of user-item interactions. In this paper, we propose a Bayesian treatment for LFM, named Bayesian Latent Factor Model (BLFM). Based on observed user-item interactions, we build a probabilistic factor model in which the regularization is introduced via placing prior constraint on latent factors, and the likelihood function is established over observations and parameters. Then we draw samples of latent factors from the posterior distribution with Variational Inference (VI) to predict expected value. We further make an extension to BLFM, called BLFMBias, incorporating user-dependent and item-dependent biases into the model for enhancing performance. Extensive experiments on the movie rating dataset show the effectiveness of our proposed models by compared with several strong baselines.

关键词
学校署名
通讯
语种
英语
相关链接[Scopus记录]
收录类别
WOS记录号
WOS:000678409200011
EI入藏号
20212910658885
EI主题词
Bayesian networks ; Factorization ; Inference engines ; Least squares approximations ; Pattern recognition ; Vector spaces
EI分类号
Expert Systems:723.4.1 ; Information Sources and Analysis:903.1 ; Mathematics:921
Scopus记录号
2-s2.0-85110470371
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9412376
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/222926
专题工学院_计算机科学与工程系
作者单位
1.School of computer science and technology, Harbin Institute of Technology, Harbin 150001, China
2.Department of computer science and engineering, Southern University of Science and Technology, Shenzhen 518055, China
3.CVTE Research, Guangzhou 510530, China
4.Cixi Institute of Biomedical Engineering, Chinese Academy of Sciences, Ningbo 315201, China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
推荐引用方式
GB/T 7714
Jiansheng Fang,Xiaoqing Zhang,Yan Hu,et al. Probabilistic Latent Factor Model for Collaborative Filtering with Bayesian Inference[C],2020:73-80.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
2012.03433.pdf(346KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiansheng Fang]的文章
[Xiaoqing Zhang]的文章
[Yan Hu]的文章
百度学术
百度学术中相似的文章
[Jiansheng Fang]的文章
[Xiaoqing Zhang]的文章
[Yan Hu]的文章
必应学术
必应学术中相似的文章
[Jiansheng Fang]的文章
[Xiaoqing Zhang]的文章
[Yan Hu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。