题名 | Parallel Exploration via Negatively Correlated Search |
作者 | |
通讯作者 | Ke Tang |
发表日期 | 2021
|
DOI | |
发表期刊 | |
ISSN | 2095-2228
|
EISSN | 2095-2236
|
卷号 | 15期号:5 |
摘要 | Effective exploration is key to a successful search process. The recently proposed negatively correlated search (NCS) tries to achieve this by coordinated parallel exploration, where a set of search processes are driven to be negatively correlated so that different promising areas of the search space can be visited simultaneously. Despite successful applications of NCS, the negatively correlated search behaviors were mostly devised by intuition, while deeper (e.g., mathematical) understanding is missing. In this paper, a more principled NCS, namely NCNES, is presented, showing that the parallel exploration is equivalent to a process of seeking probabilistic models that both lead to solutions of high quality and are distant from previous obtained probabilistic models. Reinforcement learning, for which exploration is of particular importance, are considered for empirical assessment. The proposed NCNES is applied to directly train a deep convolution network with 1.7 million connection weights for playing Atari games. Empirical results show that the significant advantages of NCNES, especially on games with uncertain and delayed rewards, can be highly owed to the effective parallel exploration ability. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | 大规模分布式演化算法及其在云计算资源管理中的应用
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Information Systems
; Computer Science, Software Engineering
; Computer Science, Theory & Methods
|
WOS记录号 | WOS:000688408600001
|
出版者 | |
EI入藏号 | 20212910661671
|
EI主题词 | Computer Science
; Computers
|
EI分类号 | Artificial Intelligence:723.4
|
来源库 | 人工提交
|
引用统计 |
被引频次[WOS]:7
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/222960 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 南方科技大学 |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Yang Peng,Ke Tang,Yao X. Parallel Exploration via Negatively Correlated Search[J]. Frontiers of Computer Science,2021,15(5).
|
APA |
Yang Peng,Ke Tang,&Yao X.(2021).Parallel Exploration via Negatively Correlated Search.Frontiers of Computer Science,15(5).
|
MLA |
Yang Peng,et al."Parallel Exploration via Negatively Correlated Search".Frontiers of Computer Science 15.5(2021).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
parallel exploration(1051KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论