中文版 | English
题名

Operator-Adapted Evolutionary Large-Scale Multiobjective Optimization for Voltage Transformer Ratio Error Estimation

作者
DOI
发表日期
2021-03-24
会议名称
EMO 2021: Evolutionary Multi-Criterion Optimization
会议录名称
卷号
12654 LNCS
页码
672-683
会议日期
2021-3-28至2021-3-31
会议地点
Shenzhen, China
出版者
摘要

Large-scale multiobjective optimization problems (LSMOPs) exist widely in real-world applications, and they are challenging for existing evolutionary algorithms due to their massive volume of search space. Despite that a number of large-scale multiobjective evolutionary algorithms (LSMOEAs) have been proposed in recent years, their effectiveness in solving LSMOPs remains unsatisfactory. One main reason is that most existing LSMOEAs may fail to balance convergence enhancement and diversity maintenance, especially for solving real-world problems. To address this issue, we propose to use a hybridized LSMOEA with adaptive operator selection (AOS) to handle real-world LSMOPs. Specifically, the proposed hybridized LSMOEA with AOS (AOS-LSMOEA) includes multiple different offspring generation and environmental selection strategies extracted from some existing LSMOEAs. Then it uses the AOS to adaptively determine the application rates of different offspring generation and environmental selection operators in an online manner. The proposed approach is capable of taking advantage of existing LSMOEAs, and the AOS enables the algorithm to choose suitable operators for solving different LSMOPs. In this study, the proposed algorithm is expected to solve the voltage transformer ratio error estimation (TREE) problems effectively. Experimental results show that AOS-LSMOEA achieves significant performance improvement due to the hybridization of different operators and the adoption of AOS method.

关键词
语种
英语
收录类别
EI入藏号
20212310467555
EI主题词
Multiobjective optimization ; Power transformers ; Trees (mathematics)
EI分类号
Electric Power Lines and Equipment:706.2 ; Combinatorial Mathematics, Includes Graph Theory, Set Theory:921.4 ; Optimization Techniques:921.5
来源库
人工提交
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/223026
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology
2.School of Artificial Intelligence and Automation, Huazhong University of Science and Technology
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Changwu Huang,Lianghao Li,Cheng He,et al. Operator-Adapted Evolutionary Large-Scale Multiobjective Optimization for Voltage Transformer Ratio Error Estimation[C]:Springer, Cham,2021:672-683.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Operator-Adapted Evo(333KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Changwu Huang]的文章
[Lianghao Li]的文章
[Cheng He]的文章
百度学术
百度学术中相似的文章
[Changwu Huang]的文章
[Lianghao Li]的文章
[Cheng He]的文章
必应学术
必应学术中相似的文章
[Changwu Huang]的文章
[Lianghao Li]的文章
[Cheng He]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。