中文版 | English
名称

When machine learning meets congestion control: A survey and comparison

作者
发布日期
2021-06-19
关键词
相关链接[Scopus记录]
摘要

Machine learning has seen a significant surge and uptake across many diverse applications. The high flexibility, adaptability, and computing capabilities it provides extend traditional approaches used in multiple fields including network operation and management. Numerous surveys have explored machine learning algorithms in the context of networking, such as traffic engineering, performance optimization, and network security. Many machine learning approaches focus on clustering, classification, regression, and reinforcement learning. The innovation of this research, and the contribution of this paper lies in the detailed summary and comparison of learning-based congestion control approaches. Compared with traditional congestion control algorithms which are typically rule-based, capabilities to learn from historical experience are highly desirable. From the literature, it is observed that reinforcement learning is a crucial trend among learning-based congestion control algorithms. In this paper, we explore the performance of reinforcement learning-based congestion control algorithms and present current problems with reinforcement learning-based congestion control algorithms. Moreover, we outline challenges and trends related to learning-based congestion control algorithms.

DOI
期刊来源
卷号
192
ISSN
1389-1286
收录类别
SCI ; EI
学校署名
通讯
通讯作者Li,Qing
WOS记录号
WOS:000697563900010
EI入藏号
20211510191855
EI主题词
Congestion control (communication) ; Learning algorithms ; Network security ; Surveys ; Traffic congestion
EI分类号
Computer Software, Data Handling and Applications:723 ; Artificial Intelligence:723.4 ; Machine Learning:723.4.2
重要成果
ESI高被引 ; ESI热点
引用统计
被引频次[WOS]:41
成果类型其他
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/223728
专题未来网络研究院
作者单位
1.Tsinghua-Berkeley Shenzhen Institute,Tsinghua University,Shenzhen,518055,China
2.PCL Research Center of Networks and Communications,Peng Cheng Laboratory,Shenzhen,518055,China
3.Institute of Future Networks,Southern University of Science and Technology,Shenzhen,518055,China
4.Computer Science and Technology,Tsinghua University,Beijing,100091,China
5.School of Computing and Information Systems,University of Melbourne,Melbourne,3004,Australia
6.Computer Science,Nanjing University,Nanjing,210093,China
通讯作者单位未来网络研究院
推荐引用方式
GB/T 7714
Jiang,Huiling,Li,Qing,Jiang,Yong,et al. When machine learning meets congestion control: A survey and comparison. 2021-06-19.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiang,Huiling]的文章
[Li,Qing]的文章
[Jiang,Yong]的文章
百度学术
百度学术中相似的文章
[Jiang,Huiling]的文章
[Li,Qing]的文章
[Jiang,Yong]的文章
必应学术
必应学术中相似的文章
[Jiang,Huiling]的文章
[Li,Qing]的文章
[Jiang,Yong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。