题名 | Towards Self-Tuning Parameter Servers |
作者 | |
DOI | |
发表日期 | 2020-12-10
|
会议名称 | 2020 IEEE International Conference on Big Data (Big Data)
|
ISBN | 978-1-7281-6252-2
|
会议录名称 | |
页码 | 310-319
|
会议日期 | 10-13 Dec. 2020
|
会议地点 | Atlanta, GA, USA
|
摘要 | Recent years, many applications have been driven advances by the use of Machine Learning (ML). Nowadays, it is common to see industrial-strength machine learning jobs that involve millions of model parameters, terabytes of training data, and weeks of training. Good efficiency, i.e., fast completion time of running a specific ML training job, therefore, is a key feature of a successful ML system. While the completion time of a long-running ML job is determined by the time required to reach model convergence, that is also largely influenced by the values of various system settings. In this paper, we contribute techniques towards building self-tuning parameter servers. Parameter Server (PS) is a popular system architecture for large-scale machine learning systems; and by self-tuning we mean while a long-running ML job is iteratively training the expert-suggested model, the system is also iteratively learning which system setting is more efficient for that job and applies it online. Our techniques are general enough to various PS-style ML systems. Experiments on TensorFlow show that our techniques can reduce the completion times of a variety of long-running TensorFlow jobs from 1.4× to 18×. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
WOS记录号 | WOS:000662554700045
|
EI入藏号 | 20211510204062
|
EI主题词 | Big data
; Machine learning
; Online systems
; Printing machinery
|
EI分类号 | Digital Computers and Systems:722.4
; Data Processing and Image Processing:723.2
; Printing Equipment:745.1.1
; Numerical Methods:921.6
|
Scopus记录号 | 2-s2.0-85103823328
|
来源库 | Scopus
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9378141 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/223787 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | 1.Chinese University of Hong Kong,Hong Kong 2.Southern University of Science and Technology,Peng Cheng Laboratory, 3.Sichuan University,China 4.Hong Kong Polytechnic University,Hong Kong |
推荐引用方式 GB/T 7714 |
Liu,Chris,Zhang,Pengfei,Tang,Bo,et al. Towards Self-Tuning Parameter Servers[C],2020:310-319.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
Towards_Self-Tuning_(987KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论