中文版 | English
题名

Towards Self-Tuning Parameter Servers

作者
DOI
发表日期
2020-12-10
会议名称
2020 IEEE International Conference on Big Data (Big Data)
ISBN
978-1-7281-6252-2
会议录名称
页码
310-319
会议日期
10-13 Dec. 2020
会议地点
Atlanta, GA, USA
摘要

Recent years, many applications have been driven advances by the use of Machine Learning (ML). Nowadays, it is common to see industrial-strength machine learning jobs that involve millions of model parameters, terabytes of training data, and weeks of training. Good efficiency, i.e., fast completion time of running a specific ML training job, therefore, is a key feature of a successful ML system. While the completion time of a long-running ML job is determined by the time required to reach model convergence, that is also largely influenced by the values of various system settings. In this paper, we contribute techniques towards building self-tuning parameter servers. Parameter Server (PS) is a popular system architecture for large-scale machine learning systems; and by self-tuning we mean while a long-running ML job is iteratively training the expert-suggested model, the system is also iteratively learning which system setting is more efficient for that job and applies it online. Our techniques are general enough to various PS-style ML systems. Experiments on TensorFlow show that our techniques can reduce the completion times of a variety of long-running TensorFlow jobs from 1.4× to 18×.

关键词
学校署名
其他
语种
英语
相关链接[Scopus记录]
收录类别
WOS记录号
WOS:000662554700045
EI入藏号
20211510204062
EI主题词
Big data ; Machine learning ; Online systems ; Printing machinery
EI分类号
Digital Computers and Systems:722.4 ; Data Processing and Image Processing:723.2 ; Printing Equipment:745.1.1 ; Numerical Methods:921.6
Scopus记录号
2-s2.0-85103823328
来源库
Scopus
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9378141
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/223787
专题南方科技大学
工学院_计算机科学与工程系
作者单位
1.Chinese University of Hong Kong,Hong Kong
2.Southern University of Science and Technology,Peng Cheng Laboratory,
3.Sichuan University,China
4.Hong Kong Polytechnic University,Hong Kong
推荐引用方式
GB/T 7714
Liu,Chris,Zhang,Pengfei,Tang,Bo,et al. Towards Self-Tuning Parameter Servers[C],2020:310-319.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
Towards_Self-Tuning_(987KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu,Chris]的文章
[Zhang,Pengfei]的文章
[Tang,Bo]的文章
百度学术
百度学术中相似的文章
[Liu,Chris]的文章
[Zhang,Pengfei]的文章
[Tang,Bo]的文章
必应学术
必应学术中相似的文章
[Liu,Chris]的文章
[Zhang,Pengfei]的文章
[Tang,Bo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。