中文版 | English
题名

Energy-efficient machine learning accelerator for binary neural networks

作者
通讯作者Yu,Hao
DOI
发表日期
2020-09-07
会议录名称
页码
77-82
摘要
Binary neural network (BNN) has shown great potential to be implemented with power efficiency and high throughput. Compared with convolutional neural network (CNN), BNN is trained with binary constrained weights and activations, which are more suitable for edge devices. In this paper, we introduce the BNN characteristics, basic operations and the binarized-network optimization methods. Then we summarize several accelerator designs for BNN hardware implementation by using three mainstream structures, i.e., ReRAM-based crossbar, FPGA and ASIC. Based on the BNN characteristics and hardware custom designs, all these methods achieve massively parallelized computations and highly pipelined data flow to enhance its latency and throughput performance. Besides, the intermediate data with the binary format are stored and processed on chip by the computing-in-memory (CIM) architecture to reduce the off-chip communication costs, including power and latency.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[Scopus记录]
收录类别
EI入藏号
20203909230009
EI主题词
Convolution ; Computing power ; Machine learning ; Computer aided design ; Convolutional neural networks ; Energy efficiency
EI分类号
Energy Conservation:525.2 ; Information Theory and Signal Processing:716.1 ; Data Storage, Equipment and Techniques:722.1 ; Computer Peripheral Equipment:722.2 ; Digital Computers and Systems:722.4 ; Computer Software, Data Handling and Applications:723 ; Artificial Intelligence:723.4 ; Computer Applications:723.5
Scopus记录号
2-s2.0-85091300397
来源库
Scopus
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/223870
专题工学院_深港微电子学院
作者单位
School of Microelectronics Engineering,Research Center of Integrated Circuits for Next-Generation Communications,Ministry of Education Southern University of Science and Technology,Shenzhen,China
第一作者单位深港微电子学院
通讯作者单位深港微电子学院
第一作者的第一单位深港微电子学院
推荐引用方式
GB/T 7714
Mao,Wei,Xiao,Zhihua,Xu,Peng,et al. Energy-efficient machine learning accelerator for binary neural networks[C],2020:77-82.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Mao,Wei]的文章
[Xiao,Zhihua]的文章
[Xu,Peng]的文章
百度学术
百度学术中相似的文章
[Mao,Wei]的文章
[Xiao,Zhihua]的文章
[Xu,Peng]的文章
必应学术
必应学术中相似的文章
[Mao,Wei]的文章
[Xiao,Zhihua]的文章
[Xu,Peng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。