题名 | Energy-efficient machine learning accelerator for binary neural networks |
作者 | |
通讯作者 | Yu,Hao |
DOI | |
发表日期 | 2020-09-07
|
会议录名称 | |
页码 | 77-82
|
摘要 | Binary neural network (BNN) has shown great potential to be implemented with power efficiency and high throughput. Compared with convolutional neural network (CNN), BNN is trained with binary constrained weights and activations, which are more suitable for edge devices. In this paper, we introduce the BNN characteristics, basic operations and the binarized-network optimization methods. Then we summarize several accelerator designs for BNN hardware implementation by using three mainstream structures, i.e., ReRAM-based crossbar, FPGA and ASIC. Based on the BNN characteristics and hardware custom designs, all these methods achieve massively parallelized computations and highly pipelined data flow to enhance its latency and throughput performance. Besides, the intermediate data with the binary format are stored and processed on chip by the computing-in-memory (CIM) architecture to reduce the off-chip communication costs, including power and latency. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [Scopus记录] |
收录类别 | |
EI入藏号 | 20203909230009
|
EI主题词 | Convolution
; Computing power
; Machine learning
; Computer aided design
; Convolutional neural networks
; Energy efficiency
|
EI分类号 | Energy Conservation:525.2
; Information Theory and Signal Processing:716.1
; Data Storage, Equipment and Techniques:722.1
; Computer Peripheral Equipment:722.2
; Digital Computers and Systems:722.4
; Computer Software, Data Handling and Applications:723
; Artificial Intelligence:723.4
; Computer Applications:723.5
|
Scopus记录号 | 2-s2.0-85091300397
|
来源库 | Scopus
|
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/223870 |
专题 | 工学院_深港微电子学院 |
作者单位 | School of Microelectronics Engineering,Research Center of Integrated Circuits for Next-Generation Communications,Ministry of Education Southern University of Science and Technology,Shenzhen,China |
第一作者单位 | 深港微电子学院 |
通讯作者单位 | 深港微电子学院 |
第一作者的第一单位 | 深港微电子学院 |
推荐引用方式 GB/T 7714 |
Mao,Wei,Xiao,Zhihua,Xu,Peng,et al. Energy-efficient machine learning accelerator for binary neural networks[C],2020:77-82.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论