题名 | Robust Federated Learning Approach for Travel Mode Identification from Non-IID GPS Trajectories |
作者 | |
通讯作者 | James J.Q. Yu |
DOI | |
发表日期 | 2021-02-25
|
会议名称 | 2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)
|
ISSN | 1521-9097
|
会议录名称 | |
会议日期 | 2-4 Dec. 2020
|
会议地点 | Hong Kong
|
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
|
出版者 | |
摘要 | GPS trajectory is one of the most significant data sources in intelligent transportation systems (ITS). A simple application is to use these data sources to help companies or organizations identify users' travel behavior. However, since GPS trajectory is directly related to private data (e.g., location) of users, citizens are unwilling to share their private information with the third-party. How to identify travel modes while protecting the privacy of users is a significant issue. Fortunately, Federated Learning (FL) framework can achieve privacy-preserving deep learning by allowing users to keep GPS data locally instead of sharing data. In this paper, we propose a Roust Federated Learning-based Travel Mode Identification System to identify travel mode without compromising privacy. Specifically, we design an attention augmented model architectures and leverage robust FL to achieve privacy-preserving travel mode identification without accessing raw GPS data from the users. Compared to existing models, we are able to achieve more accurate identification results than the centralized model. Furthermore, considering the problem of non-Independent and Identically Distributed (non-IID) GPS data in the realworld, we develop a secure data sharing strategy to adjust the distribution of local data for each user, thereby the proposed model with non-IID data can achieve accuracy close to the distribution of IID data. Extensive experimental studies on a real-world dataset demonstrate that the proposed model can achieve accurate identification without compromising privacy and being robust to real-world non-IID data. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | General Program of Guangdong Basic and Applied Basic Research Foundation[2019A1515011032]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Hardware & Architecture
; Computer Science, Theory & Methods
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000662964400069
|
来源库 | 人工提交
|
引用统计 |
被引频次[WOS]:12
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/223888 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering, Southern University of Science and Technology 2.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation 3.School of Computer Science and Engineering, Nanyang Technological University |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Yuanshao Zhu,Shuyu Zhang,Yi Liu,et al. Robust Federated Learning Approach for Travel Mode Identification from Non-IID GPS Trajectories[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2021.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论