中文版 | English
题名

Robust Federated Learning Approach for Travel Mode Identification from Non-IID GPS Trajectories

作者
通讯作者James J.Q. Yu
DOI
发表日期
2021-02-25
会议名称
2020 IEEE 26th International Conference on Parallel and Distributed Systems (ICPADS)
ISSN
1521-9097
会议录名称
会议日期
2-4 Dec. 2020
会议地点
Hong Kong
出版地
10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
出版者
摘要

GPS trajectory is one of the most significant data sources in intelligent transportation systems (ITS). A simple application is to use these data sources to help companies or organizations identify users' travel behavior. However, since GPS trajectory is directly related to private data (e.g., location) of users, citizens are unwilling to share their private information with the third-party. How to identify travel modes while protecting the privacy of users is a significant issue. Fortunately, Federated Learning (FL) framework can achieve privacy-preserving deep learning by allowing users to keep GPS data locally instead of sharing data. In this paper, we propose a Roust Federated Learning-based Travel Mode Identification System to identify travel mode without compromising privacy. Specifically, we design an attention augmented model architectures and leverage robust FL to achieve privacy-preserving travel mode identification without accessing raw GPS data from the users. Compared to existing models, we are able to achieve more accurate identification results than the centralized model. Furthermore, considering the problem of non-Independent and Identically Distributed (non-IID) GPS data in the realworld, we develop a secure data sharing strategy to adjust the distribution of local data for each user, thereby the proposed model with non-IID data can achieve accuracy close to the distribution of IID data. Extensive experimental studies on a real-world dataset demonstrate that the proposed model can achieve accurate identification without compromising privacy and being robust to real-world non-IID data.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
General Program of Guangdong Basic and Applied Basic Research Foundation[2019A1515011032]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号
WOS:000662964400069
来源库
人工提交
引用统计
被引频次[WOS]:12
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/223888
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology
2.Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation
3.School of Computer Science and Engineering, Nanyang Technological University
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Yuanshao Zhu,Shuyu Zhang,Yi Liu,et al. Robust Federated Learning Approach for Travel Mode Identification from Non-IID GPS Trajectories[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2021.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yuanshao Zhu]的文章
[Shuyu Zhang]的文章
[Yi Liu]的文章
百度学术
百度学术中相似的文章
[Yuanshao Zhu]的文章
[Shuyu Zhang]的文章
[Yi Liu]的文章
必应学术
必应学术中相似的文章
[Yuanshao Zhu]的文章
[Shuyu Zhang]的文章
[Yi Liu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。