中文版 | English
题名

FedGRU: Privacy-preserving Traffic Flow Prediction via Federated Learning

作者
通讯作者James J.Q. Yu
DOI
发表日期
2020-12-24
会议名称
2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC)
ISSN
2153-0009
ISBN
978-1-7281-4150-3
会议录名称
页码
3517-3522
会议日期
20-23 Sept. 2020
会议地点
Rhodes, Greece
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Existing traffic flow forecasting technologies achieve great success based on deep learning models on a large number of datasets gathered by organizations. However, there are two critical challenges. One is that data exists in the form of "isolated islands - . The other is the data privacy and security issue, which is becoming more significant than ever before. In this paper, we propose a Federated Learning-based Gated Recurrent Unit neural network framework (FedGRU) for traffic flow prediction (TFP) to address these challenges. Specifically, FedGRU model differs from current centralized learning methods and updates a universe learning model through a secure aggregation parameter mechanism rather than sharing data among organizations. In the secure parameter aggregation mechanism, we introduce a Federated Averaging algorithm to control the communication overhead during parameter transmission. Through extensive case studies on the Performance Measurement System (PeMS) dataset, it is shown that FedGRU model can achieve accurate and timely traffic prediction without compromising privacy.
其他摘要

Existing traffic flow forecasting technologies achieve great success based on deep learning models on a large number of datasets gathered by organizations. However, there are two critical challenges. One is that data exists in the form of “isolated islands”. The other is the data privacy and security issue, which is becoming more significant than ever before. In this paper, we propose a Federated Learning-based Gated Recurrent Unit neural network framework (FedGRU) for traffic flow prediction (TFP) to address these challenges. Specifically, FedGRU model differs from current centralized learning methods and updates a universe learning model through a secure aggregation parameter mechanism rather than sharing data among organizations. In the secure parameter aggregation mechanism, we introduce a Federated Averaging algorithm to control the communication overhead during parameter transmission. Through extensive case studies on the Performance Measurement System (PeMS) dataset, it is shown that FedGRU model can achieve accurate and timely traffic prediction without compromising privacy.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
General Program of Guangdong Basic and Applied Basic Research Foundation[2019A1515011032]
WOS研究方向
Engineering ; Transportation
WOS类目
Engineering, Electrical & Electronic ; Transportation Science & Technology
WOS记录号
WOS:000682770701114
EI入藏号
20210409824478
EI主题词
Data Sharing ; Forecasting ; Intelligent systems ; Intelligent vehicle highway systems ; Large dataset ; Privacy by design ; Recurrent neural networks ; Traffic control
EI分类号
Artificial Intelligence:723.4 ; Computer Applications:723.5
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9294453
引用统计
被引频次[WOS]:9
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/223891
专题工学院_计算机科学与工程系
作者单位
1.Guangdong Provincial Key Laboratory of Braininspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.School of Data Science and Technology, Heilongjiang University, Harbin, China
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Yi Liu,Shuyu Zhang,Chenhan Zhang,et al. FedGRU: Privacy-preserving Traffic Flow Prediction via Federated Learning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:3517-3522.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yi Liu]的文章
[Shuyu Zhang]的文章
[Chenhan Zhang]的文章
百度学术
百度学术中相似的文章
[Yi Liu]的文章
[Shuyu Zhang]的文章
[Chenhan Zhang]的文章
必应学术
必应学术中相似的文章
[Yi Liu]的文章
[Shuyu Zhang]的文章
[Chenhan Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。