中文版 | English
题名

Performance Comparison of Multi-Objective Evolutionary Algorithms on Simple and Difficult Many-Objective Test Problems

作者
通讯作者Hisao Ishibuchi
DOI
发表日期
2020-12
会议名称
2020 IEEE Symposium Series on Computational Intelligence (SSCI)
ISBN
978-1-7281-2548-0
会议录名称
页码
2461-2468
会议日期
1-4 Dec. 2020
会议地点
Canberra, ACT, Australia
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要

Recently, a number of many-objective evolutionary algorithms have been proposed in the literature. Those algorithms are often evaluated using the frequently-used DTLZ and WFG test problems. One feature of those test problems is the use of the same distance function in all objectives in each problem. As a result, the distance from each solution to the Pareto front is minimized by optimizing the distance function. This means that the convergence improvement is a single-objective optimization independent of the number of objectives. This feature makes the DTLZ and WFG test problems easy. Recently, some difficult test problems have been proposed by removing this feature. In this paper, we examine the performance of many-objective evolutionary algorithms through computational experiments on a recently-proposed difficult test problem with no distance function. We show that totally different comparison results are obtained for the easy test problems with distance functions (i.e., DTLZ and WFG) and the difficult test problem with no distance function.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China[61876075]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Engineering, Electrical & Electronic
WOS记录号
WOS:000682772902067
EI入藏号
20210409827644
EI主题词
Intelligent computing ; Testing
EI分类号
Artificial Intelligence:723.4
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9308558
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/223901
专题工学院_计算机科学与工程系
作者单位
Department of Computer Science and Engineering, Southern University of Science and Technology
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Longcan Chen,Ke Shang,Hisao Ishibuchi. Performance Comparison of Multi-Objective Evolutionary Algorithms on Simple and Difficult Many-Objective Test Problems[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:2461-2468.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Longcan Chen]的文章
[Ke Shang]的文章
[Hisao Ishibuchi]的文章
百度学术
百度学术中相似的文章
[Longcan Chen]的文章
[Ke Shang]的文章
[Hisao Ishibuchi]的文章
必应学术
必应学术中相似的文章
[Longcan Chen]的文章
[Ke Shang]的文章
[Hisao Ishibuchi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。