题名 | Performance Comparison of Multi-Objective Evolutionary Algorithms on Simple and Difficult Many-Objective Test Problems |
作者 | |
通讯作者 | Hisao Ishibuchi |
DOI | |
发表日期 | 2020-12
|
会议名称 | 2020 IEEE Symposium Series on Computational Intelligence (SSCI)
|
ISBN | 978-1-7281-2548-0
|
会议录名称 | |
页码 | 2461-2468
|
会议日期 | 1-4 Dec. 2020
|
会议地点 | Canberra, ACT, Australia
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Recently, a number of many-objective evolutionary algorithms have been proposed in the literature. Those algorithms are often evaluated using the frequently-used DTLZ and WFG test problems. One feature of those test problems is the use of the same distance function in all objectives in each problem. As a result, the distance from each solution to the Pareto front is minimized by optimizing the distance function. This means that the convergence improvement is a single-objective optimization independent of the number of objectives. This feature makes the DTLZ and WFG test problems easy. Recently, some difficult test problems have been proposed by removing this feature. In this paper, we examine the performance of many-objective evolutionary algorithms through computational experiments on a recently-proposed difficult test problem with no distance function. We show that totally different comparison results are obtained for the easy test problems with distance functions (i.e., DTLZ and WFG) and the difficult test problem with no distance function. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Natural Science Foundation of China[61876075]
|
WOS研究方向 | Computer Science
; Engineering
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Interdisciplinary Applications
; Engineering, Electrical & Electronic
|
WOS记录号 | WOS:000682772902067
|
EI入藏号 | 20210409827644
|
EI主题词 | Intelligent computing
; Testing
|
EI分类号 | Artificial Intelligence:723.4
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9308558 |
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/223901 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Department of Computer Science and Engineering, Southern University of Science and Technology |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Longcan Chen,Ke Shang,Hisao Ishibuchi. Performance Comparison of Multi-Objective Evolutionary Algorithms on Simple and Difficult Many-Objective Test Problems[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2020:2461-2468.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论