题名 | Transformation-based Hypervolume Indicator: A Framework for Designing Hypervolume Variants |
作者 | |
通讯作者 | Hisao Ishibuchi |
DOI | |
发表日期 | 2020-12
|
会议名称 | 2020 IEEE Symposium Series on Computational Intelligence (SSCI)
|
ISBN | 978-1-7281-2548-0
|
会议录名称 | |
页码 | 157-164
|
会议日期 | 1-4 Dec. 2020
|
会议地点 | Canberra, ACT, Australia
|
会议举办国 | Australia
|
摘要 | The hypervolume indicator is a popular performance indicator in the field of Evolutionary Multi-objective optimization (EMO). However, there are two issues associated with it in addition to its large calculation cost for many-objective problems. The first issue is that the maximization of the hypervolume indicator leads to a non-uniform solution set on a nonlinear Pareto front. The second issue is that it cannot handle preference information. To address these two issues, some hypervolume variants have been proposed in the literature. In this paper, first we review these variants and extract the common characteristic among them, i.e., all these variants can be converted to the standard hypervolume indicator with a transformed solution set. Based on this observation, we propose the transformation-based hypervolume indicator, which is a framework for designing hypervolume variants. Then, we propose two new hypervolume variants based on our framework. Empirical studies suggest the effectiveness of the proposed variants for addressing the above-mentioned two issues. Our experimental results also suggest the possibility of designing other hypervolume variants for different purposes using our framework. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [IEEE记录] |
收录类别 | |
EI入藏号 | 20210409827550
|
EI主题词 | Intelligent computing
|
EI分类号 | Artificial Intelligence:723.4
; Optimization Techniques:921.5
|
来源库 | 人工提交
|
全文链接 | https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9308461 |
引用统计 |
被引频次[WOS]:0
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/223974 |
专题 | 南方科技大学 工学院_计算机科学与工程系 |
作者单位 | Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Ke Shang,Hisao Ishibuchi,Yang Nan,et al. Transformation-based Hypervolume Indicator: A Framework for Designing Hypervolume Variants[C],2020:157-164.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论