中文版 | English
题名

Transformation-based Hypervolume Indicator: A Framework for Designing Hypervolume Variants

作者
通讯作者Hisao Ishibuchi
DOI
发表日期
2020-12
会议名称
2020 IEEE Symposium Series on Computational Intelligence (SSCI)
ISBN
978-1-7281-2548-0
会议录名称
页码
157-164
会议日期
1-4 Dec. 2020
会议地点
Canberra, ACT, Australia
会议举办国
Australia
摘要

The hypervolume indicator is a popular performance indicator in the field of Evolutionary Multi-objective optimization (EMO). However, there are two issues associated with it in addition to its large calculation cost for many-objective problems. The first issue is that the maximization of the hypervolume indicator leads to a non-uniform solution set on a nonlinear Pareto front. The second issue is that it cannot handle preference information. To address these two issues, some hypervolume variants have been proposed in the literature. In this paper, first we review these variants and extract the common characteristic among them, i.e., all these variants can be converted to the standard hypervolume indicator with a transformed solution set. Based on this observation, we propose the transformation-based hypervolume indicator, which is a framework for designing hypervolume variants. Then, we propose two new hypervolume variants based on our framework. Empirical studies suggest the effectiveness of the proposed variants for addressing the above-mentioned two issues. Our experimental results also suggest the possibility of designing other hypervolume variants for different purposes using our framework.

关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[IEEE记录]
收录类别
EI入藏号
20210409827550
EI主题词
Intelligent computing
EI分类号
Artificial Intelligence:723.4 ; Optimization Techniques:921.5
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9308461
引用统计
被引频次[WOS]:0
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/223974
专题南方科技大学
工学院_计算机科学与工程系
作者单位
Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Southern University of Science and Technology
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Ke Shang,Hisao Ishibuchi,Yang Nan,et al. Transformation-based Hypervolume Indicator: A Framework for Designing Hypervolume Variants[C],2020:157-164.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ke Shang]的文章
[Hisao Ishibuchi]的文章
[Yang Nan]的文章
百度学术
百度学术中相似的文章
[Ke Shang]的文章
[Hisao Ishibuchi]的文章
[Yang Nan]的文章
必应学术
必应学术中相似的文章
[Ke Shang]的文章
[Hisao Ishibuchi]的文章
[Yang Nan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。