中文版 | English
题名

A New Framework of Evolutionary Multi-Objective Algorithms with an Unbounded External Archive

作者
通讯作者Hisao Ishibuchi
DOI
发表日期
2020-08
会议名称
Twenty-fourth European Conference on Artificial Intelligence (ECAI 2020)
会议录名称
卷号
Volume 325: ECAI 2020
页码
283 - 290
会议日期
August 29th to September 8th, 2020
会议地点
Santiago de Compostela, Spain
摘要

This paper proposes a new framework for the design of evolutionary multi-objective optimization (EMO) algorithms. The main characteristic feature of the proposed framework is that the optimization result of an EMO algorithm is not the final population but a subset of the examined solutions during its execution. As a post-processing procedure, a pre-specified number of solutions are selected from an unbounded external archive where all the examined solutions are stored. In the proposed framework, the final population does not have to be a good solution set. The point of the algorithm design is to examine a wide variety of solutions over the entire Pareto front and to select well-distributed solutions from the archive. In this paper, first we explain difficulties in the design of EMO algorithms in the existing two frameworks: non-elitist and elitist. Next we propose the new framework of EMO algorithms. Then we demonstrate advantages of the proposed framework over the existing ones through computational experiments. Finally we suggest some interesting and promising future research topics.

学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
WOS记录号
WOS:000650971300036
来源库
人工提交
引用统计
被引频次[WOS]:19
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/223977
专题工学院_计算机科学与工程系
作者单位
Department of Computer Science and Engineering, Southern University of Science and Technology,
第一作者单位计算机科学与工程系
通讯作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Hisao Ishibuchi,Lie Meng Pang,Ke Shang. A New Framework of Evolutionary Multi-Objective Algorithms with an Unbounded External Archive[C],2020:283 - 290.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
FAIA-325-FAIA200104.(1224KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hisao Ishibuchi]的文章
[Lie Meng Pang]的文章
[Ke Shang]的文章
百度学术
百度学术中相似的文章
[Hisao Ishibuchi]的文章
[Lie Meng Pang]的文章
[Ke Shang]的文章
必应学术
必应学术中相似的文章
[Hisao Ishibuchi]的文章
[Lie Meng Pang]的文章
[Ke Shang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。