题名 | A New Framework of Evolutionary Multi-Objective Algorithms with an Unbounded External Archive |
作者 | |
通讯作者 | Hisao Ishibuchi |
DOI | |
发表日期 | 2020-08
|
会议名称 | Twenty-fourth European Conference on Artificial Intelligence (ECAI 2020)
|
会议录名称 | |
卷号 | Volume 325: ECAI 2020
|
页码 | 283 - 290
|
会议日期 | August 29th to September 8th, 2020
|
会议地点 | Santiago de Compostela, Spain
|
摘要 | This paper proposes a new framework for the design of evolutionary multi-objective optimization (EMO) algorithms. The main characteristic feature of the proposed framework is that the optimization result of an EMO algorithm is not the final population but a subset of the examined solutions during its execution. As a post-processing procedure, a pre-specified number of solutions are selected from an unbounded external archive where all the examined solutions are stored. In the proposed framework, the final population does not have to be a good solution set. The point of the algorithm design is to examine a wide variety of solutions over the entire Pareto front and to select well-distributed solutions from the archive. In this paper, first we explain difficulties in the design of EMO algorithms in the existing two frameworks: non-elitist and elitist. Next we propose the new framework of EMO algorithms. Then we demonstrate advantages of the proposed framework over the existing ones through computational experiments. Finally we suggest some interesting and promising future research topics. |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
WOS记录号 | WOS:000650971300036
|
来源库 | 人工提交
|
引用统计 |
被引频次[WOS]:19
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/223977 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | Department of Computer Science and Engineering, Southern University of Science and Technology, |
第一作者单位 | 计算机科学与工程系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Hisao Ishibuchi,Lie Meng Pang,Ke Shang. A New Framework of Evolutionary Multi-Objective Algorithms with an Unbounded External Archive[C],2020:283 - 290.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
FAIA-325-FAIA200104.(1224KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论