中文版 | English
题名

In Vivo Computing Strategies for Tumor Sensitization and Targeting

作者
通讯作者Yifan Chen
发表日期
2020-10-29
DOI
发表期刊
ISSN
2168-2275
EISSN
2168-2275
卷号52期号:6页码:4970-4980
摘要
Several evolution strategies for in vivo computation are proposed with the aim of realizing tumor sensitization and targeting (TST) by externally manipulable nanoswimmers. In such targeting systems, nanoswimmers assembled by magnetic nanoparticles are externally manipulated to search for the tumor in the high-risk tissue by a rotating magnetic field produced by a coil system. This process can be interpreted as in vivo computation, where the tumor in the high-risk tissue corresponds to the global maximum or minimum of the in vivo optimization problem, the nanoswimmers are seen as the computational agents, the tumor-triggered biological gradient field (BGF) is used for fitness evaluation of the agents, and the high-risk tissue is the search space. Considering that the state-of-the-art magnetic nanoswimmer control method can only actuate all the nanoswimmers heading in the same direction simultaneously, we introduce the orthokinetic movement strategies into the agent location updating in the existing swarm intelligence algorithms. Especially, the gravitational search algorithm (GSA) is revisited and the corresponding in vivo optimization algorithm called orthokinetic GSA (OGSA) is proposed to carry out the TST. Furthermore, to determine the direction of the orthokinetic agent movement in every iteration of the operation, we propose several strategies according to the fitness ranking of the nanoswimmers in the BGF. To verify the superiority of the OGSA and choose the optimal evolution strategy, some numerical experiments are presented and compared with that of the brute-force search, which represents the traditional method for TST. It is found that the TST performance can be improved by the weak priority evolution strategy (WP-ES) in most of the scenarios
关键词
相关链接[IEEE记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
WOS研究方向
Automation & Control Systems ; Computer Science
WOS类目
Automation & Control Systems ; Computer Science, Artificial Intelligence ; Computer Science, Cybernetics
WOS记录号
WOS:000819019200085
出版者
EI入藏号
20222812340689
EI主题词
Biology ; Global optimization ; Iterative methods ; Magnetic fields ; Nanomagnetics ; Nanoparticles ; Numerical methods ; Tumors
EI分类号
Biological Materials and Tissue Engineering:461.2 ; Biology:461.9 ; Magnetism: Basic Concepts and Phenomena:701.2 ; Artificial Intelligence:723.4 ; Nanotechnology:761 ; Optimization Techniques:921.5 ; Numerical Methods:921.6 ; Solid State Physics:933
来源库
人工提交
全文链接https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9244143
引用统计
被引频次[WOS]:10
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/224004
专题工学院_计算机科学与工程系
作者单位
1.School of Life Science, Technology, University of Electronic Science and Technology of China, Chengdu 610051, China
2.Robotics Research Center, Peng Cheng Laboratory, Shenzhen 518055, China
3.School of Engineering, University of Waikato, Hamilton 3216, New Zealand
4.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
5.School of Computer Science, University of Birmingham, Birmingham B15 2TT, U.K.
推荐引用方式
GB/T 7714
Shaolong Shi,Yifan Chen,Xin Yao. In Vivo Computing Strategies for Tumor Sensitization and Targeting[J]. IEEE Transactions on Cybernetics,2020,52(6):4970-4980.
APA
Shaolong Shi,Yifan Chen,&Xin Yao.(2020).In Vivo Computing Strategies for Tumor Sensitization and Targeting.IEEE Transactions on Cybernetics,52(6),4970-4980.
MLA
Shaolong Shi,et al."In Vivo Computing Strategies for Tumor Sensitization and Targeting".IEEE Transactions on Cybernetics 52.6(2020):4970-4980.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shaolong Shi]的文章
[Yifan Chen]的文章
[Xin Yao]的文章
百度学术
百度学术中相似的文章
[Shaolong Shi]的文章
[Yifan Chen]的文章
[Xin Yao]的文章
必应学术
必应学术中相似的文章
[Shaolong Shi]的文章
[Yifan Chen]的文章
[Xin Yao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。