题名 | Low-Power Computing with Neuromorphic Engineering |
作者 | |
通讯作者 | Hao Yu; Yang Chai |
发表日期 | 2020
|
DOI | |
发表期刊 | |
卷号 | 3期号:2 |
摘要 | The increasing power consumption in the existing computation architecture presents grand challenges for the performance and reliability of very‐large‐scale integrated circuits. Inspired by the characteristics of the human brain for processing complicated tasks with low power, neuromorphic computing is intensively investigated for decreasing power consumption and enriching computation functions. Hardware implementation of neuromorphic computing with emerging devices substantially reduces power consumption down to a few mW cm−2, compared with the central processing unit based on conventional Si complementary metal–oxide semiconductor (CMOS) technologies (50–100 W cm−2). Herein, a brief introduction on the characteristics of neuromorphic computing is provided. Then, emerging devices for low‐power neuromorphic computing are overviewed, e.g., resistive random access memory with low power consumption (< pJ) per synaptic event. A few computation models for artificial neural networks (NNs), including spiking neural network (SNN) and deep neural network (DNN), which boost power efficiency by simplifying the computing procedure and minimizing memory access are discussed. A few examples for system‐level demonstration are described, such as mixed synchronous–asynchronous and reconfigurable convolution neuron network (CNN)–recurrent NN (RNN) for low‐power computing. |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
来源库 | 人工提交
|
引用统计 |
被引频次[WOS]:42
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/225092 |
专题 | 南方科技大学 工学院_深港微电子学院 |
作者单位 | 1.Southern University of Science and Technology 2.Hong Kong Polytechnic University |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Dingbang Liu,Hao Yu,Yang Chai. Low-Power Computing with Neuromorphic Engineering[J]. Adavance Intelligence System,2020,3(2).
|
APA |
Dingbang Liu,Hao Yu,&Yang Chai.(2020).Low-Power Computing with Neuromorphic Engineering.Adavance Intelligence System,3(2).
|
MLA |
Dingbang Liu,et al."Low-Power Computing with Neuromorphic Engineering".Adavance Intelligence System 3.2(2020).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
aisy.202000150.pdf(3315KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论