中文版 | English
题名

Fatigue Damage–Resistant Physical Hydrogel Adhesion

作者
通讯作者Canhui,Yang
共同第一作者Qi,Li; Luochang,Wang
发表日期
2021-04-15
DOI
发表期刊
ISSN
2296-9144
卷号8
摘要

Strong adhesion between hydrogels and various engineering surfaces has been achieved; yet, achieving fatigue-resistant hydrogel adhesion remains challenging. Here, we examine the fatigue of a specific type of hydrogel adhesion enabled by hydrogen bonds and wrinkling and show that the physical interactions–based hydrogel adhesion can resist fatigue damage. We synthesize polyacrylamide hydrogel as the adherend and poly(acrylic acid-co-acrylamide) hydrogel as the adhesive. The adherend and the adhesive interact via hydrogen bonds. We further introduce wrinkles at the interface by biaxially prestretching and then releasing the adherends and perform butt-joint tests to probe the adhesion performance. Experimental results reveal that the samples with a wrinkled interface resist fatigue damage, while the samples with a flat interface fail in ~9,000 cycles at stress levels of 70 and 63% peak stresses in static failure. The endurance limit of the wrinkled-interface samples is comparable to the peak stress of the flat-interface samples. Moreover, we find that the nearly perfectly elastic polyacrylamide hydrogel also suffers fatigue damage, which limits the fatigue life of the wrinkled-interface samples. When cohesive failure ensues, the evolutions of the elastic modulus of wrinkled-interface samples and hydrogel bulk, both in satisfactory agreements with the predictions of damage accumulation theory, are alike. We observe similar behaviors in different material systems with polyacrylamide hydrogels with different water contents. This work proves that physical interactions can be engaged in engineering fatigue-resistant adhesion between soft materials such as hydrogels.

相关链接[来源记录]
收录类别
语种
其他
学校署名
第一 ; 共同第一 ; 通讯
WOS记录号
WOS:000645119500001
出版者
来源库
人工提交
引用统计
被引频次[WOS]:5
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/226024
专题工学院_力学与航空航天工程系
作者单位
1.Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, China
2.State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, The Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), College of Engineering, Peking University, Beijing, China
3.Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States
4.Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
第一作者单位力学与航空航天工程系
通讯作者单位力学与航空航天工程系
第一作者的第一单位力学与航空航天工程系
推荐引用方式
GB/T 7714
Qi,Li,Luochang,Wang,Qihan,Liu,等. Fatigue Damage–Resistant Physical Hydrogel Adhesion[J]. Frontiers in Robotics and AI,2021,8.
APA
Qi,Li,Luochang,Wang,Qihan,Liu,Wei,Hong,&Canhui,Yang.(2021).Fatigue Damage–Resistant Physical Hydrogel Adhesion.Frontiers in Robotics and AI,8.
MLA
Qi,Li,et al."Fatigue Damage–Resistant Physical Hydrogel Adhesion".Frontiers in Robotics and AI 8(2021).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
fatigue damage 2021.(2087KB)----限制开放--
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Qi,Li]的文章
[Luochang,Wang]的文章
[Qihan,Liu]的文章
百度学术
百度学术中相似的文章
[Qi,Li]的文章
[Luochang,Wang]的文章
[Qihan,Liu]的文章
必应学术
必应学术中相似的文章
[Qi,Li]的文章
[Luochang,Wang]的文章
[Qihan,Liu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。