题名 | Fatigue Damage–Resistant Physical Hydrogel Adhesion |
作者 | |
通讯作者 | Canhui,Yang |
共同第一作者 | Qi,Li; Luochang,Wang |
发表日期 | 2021-04-15
|
DOI | |
发表期刊 | |
ISSN | 2296-9144
|
卷号 | 8 |
摘要 | Strong adhesion between hydrogels and various engineering surfaces has been achieved; yet, achieving fatigue-resistant hydrogel adhesion remains challenging. Here, we examine the fatigue of a specific type of hydrogel adhesion enabled by hydrogen bonds and wrinkling and show that the physical interactions–based hydrogel adhesion can resist fatigue damage. We synthesize polyacrylamide hydrogel as the adherend and poly(acrylic acid-co-acrylamide) hydrogel as the adhesive. The adherend and the adhesive interact via hydrogen bonds. We further introduce wrinkles at the interface by biaxially prestretching and then releasing the adherends and perform butt-joint tests to probe the adhesion performance. Experimental results reveal that the samples with a wrinkled interface resist fatigue damage, while the samples with a flat interface fail in ~9,000 cycles at stress levels of 70 and 63% peak stresses in static failure. The endurance limit of the wrinkled-interface samples is comparable to the peak stress of the flat-interface samples. Moreover, we find that the nearly perfectly elastic polyacrylamide hydrogel also suffers fatigue damage, which limits the fatigue life of the wrinkled-interface samples. When cohesive failure ensues, the evolutions of the elastic modulus of wrinkled-interface samples and hydrogel bulk, both in satisfactory agreements with the predictions of damage accumulation theory, are alike. We observe similar behaviors in different material systems with polyacrylamide hydrogels with different water contents. This work proves that physical interactions can be engaged in engineering fatigue-resistant adhesion between soft materials such as hydrogels. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 其他
|
学校署名 | 第一
; 共同第一
; 通讯
|
WOS记录号 | WOS:000645119500001
|
出版者 | |
来源库 | 人工提交
|
引用统计 |
被引频次[WOS]:5
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/226024 |
专题 | 工学院_力学与航空航天工程系 |
作者单位 | 1.Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, China 2.State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, The Beijing Innovation Center for Engineering Science and Advanced Technology (BIC-ESAT), College of Engineering, Peking University, Beijing, China 3.Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States 4.Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan |
第一作者单位 | 力学与航空航天工程系 |
通讯作者单位 | 力学与航空航天工程系 |
第一作者的第一单位 | 力学与航空航天工程系 |
推荐引用方式 GB/T 7714 |
Qi,Li,Luochang,Wang,Qihan,Liu,等. Fatigue Damage–Resistant Physical Hydrogel Adhesion[J]. Frontiers in Robotics and AI,2021,8.
|
APA |
Qi,Li,Luochang,Wang,Qihan,Liu,Wei,Hong,&Canhui,Yang.(2021).Fatigue Damage–Resistant Physical Hydrogel Adhesion.Frontiers in Robotics and AI,8.
|
MLA |
Qi,Li,et al."Fatigue Damage–Resistant Physical Hydrogel Adhesion".Frontiers in Robotics and AI 8(2021).
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
fatigue damage 2021.(2087KB) | -- | -- | 限制开放 | -- |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论